Skip to main content
Log in

A multitarget angiogenesis inhibitor, CTT peptide-endostatin mimic-kringle 5, prevents diet-induced obesity

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Adipose tissue vasculature has been considered an attractive target for prevention and treatment of obesity. AARP (CTT peptide-endostatin mimic-kringle 5) is a novel multitarget fusion protein against tumor angiogenesis. This study aimed to examine the effects of AARP on diet-induced obesity and its possible molecular mechanism. Treatment with AARP markedly prevented weight gains, improved metabolic disturbances, and decreased adipose tissue angiogenesis in diet-induced obese mice without noticeable toxicities. In addition to its potent antiangiogenic and MMP-2/9 inhibitory activities, AARP administration also significantly increased energy expenditure, influenced the metabolic and angiogenic gene expression profiles, and attenuated obesity-induced inflammation, demonstrating its systemic beneficial effects. Importantly, AARP exhibited no effect on mice fed with standard normal mouse diet. Furthermore, the AARP-treated HFD-fed mice experienced a significant increase in lifespan during the posttreatment observation period, compared with untreated HFD-fed mice. Our results suggest that AARP might be pharmacologically useful for treatment of obesity or obesity-related metabolic disorders in humans.

Key messages

What is already known

• More effective and safe therapies for obesity are in urgent need.

• AARP is a novel multitarget fusion protein against tumor angiogenesis.

What this study adds

• AARP prevents obesity, improves metabolic disorders in mice fed high-fat diet.

• AARP increases energy expenditure, decreases adipose tissue angiogenesis, and increases lifespan.

• AARP is well tolerated and exhibits no observable toxicity.

Clinical significance

• AARP may be a promising therapeutic agent against obesity or obesity-related metabolic disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

AARP:

CTT peptide-endostatin mimic-kringle 5

ACC:

Acetyl-CoA carboxylase

AST:

Aspartate aminotransferase

ALT:

Alanine aminotransferase

BAT:

Brown adipose tissue

CPT1a:

Carnitine palmitoyltransferase 1a

EC:

Endothelial cell

ECM:

Extracellular matrix

FAS:

Fatty acid synthase

FGF:

Fibroblast growth factor

FGF-2:

Fibroblast growth factor-2

FFA:

Free fatty acid

GTT:

Glucose tolerance test

HFD:

High-fat diet

HDL-c:

High-density lipoprotein cholesterol

HGF:

Hepatocyte growth factor

HUVEC:

Human umbilical vein endothelial cell

ITT:

Insulin tolerance test

LCAD:

Long-chain acyl-CoA dehydrogenase

SD:

Standard normal mouse diet

LDL-c:

Low-density lipoprotein-cholesterol

MCAD:

Medium-chain acyl-CoA dehydrogenase

MMP:

Matrix metalloproteinase

NAFLD:

Nonalcoholic fatty liver disease

PGC1α:

Peroxisome proliferator-activated receptor gamma coactivator 1α

PPAR-γ:

Peroxisome proliferator-activated receptor-gamma

RER:

Respiratory exchange ratio

TG:

Triglyceride

TC:

Total cholesterol

VEGF:

Vascular endothelial growth factor

WAT:

White adipose tissue

SREBP-1c:

Sterol regulatory element binding protein-1c

TNF-α:

Tumor necrosis factor-alpha

VEGF-A:

Vascular endothelial growth factor-A

References

  1. Friedman JM (2003) A war on obesity, not the obese. Science 299:856–858

    CAS  PubMed  Google Scholar 

  2. Kent S (1982) Body weight and life expectancy. Geriatrics 37:149–157

    PubMed  Google Scholar 

  3. Mann CC (2005) Public health. Provocative study says obesity may reduce U.S. life expectancy. Science 307:1716–1717

    CAS  PubMed  Google Scholar 

  4. Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–853

    CAS  PubMed  PubMed Central  Google Scholar 

  5. De Lorenzo A, Romano L, Di Renzo L, Di Lorenzo N, Cenname G, Gualtieri P (2020) Obesity: a preventable, treatable, but relapsing disease. Nutrition 71:110615

    PubMed  Google Scholar 

  6. Johns DJ, Hartmann-Boyce J, Jebb SA, Aveyard P, Behavioural Weight Management Review G (2014) Diet or exercise interventions vs combined behavioral weight management programs: a systematic review and meta-analysis of direct comparisons. J Acad Nutr Diet 114:1557–1568

    PubMed  PubMed Central  Google Scholar 

  7. Westerterp-Plantenga MS, Nieuwenhuizen A, Tome D, Soenen S, Westerterp KR (2009) Dietary protein, weight loss, and weight maintenance. Annu Rev Nutr 29:21–41

    CAS  PubMed  Google Scholar 

  8. Folkman J (2006) Antiangiogenesis in cancer therapy-endostatin and its mechanisms of action. Exp Cell Res 312:594–607

    CAS  PubMed  Google Scholar 

  9. Rupnick MA, Panigrahy D, Zhang CY, Dallabrida SM, Lowell BB, Langer R, Folkman MJ (2002) Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci U S A 99:10730–10735

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cao Y (2013) Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab 18:478–489

    CAS  PubMed  Google Scholar 

  11. Lemoine AY, Ledoux S, Larger E (2013) Adipose tissue angiogenesis in obesity. Thromb Haemost 110:661–668

    CAS  PubMed  Google Scholar 

  12. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    CAS  PubMed  Google Scholar 

  13. Pellegrinelli V, Carobbio S, Vidal-Puig A (2016) Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia 59:1075–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao H (2014) Adipocytokines in obesity and metabolic disease. J Endocrinol 220:T47–T59

    CAS  PubMed  PubMed Central  Google Scholar 

  15. White HM, Acton AJ, Considine RV (2012) The angiogenic inhibitor TNP-470 decreases caloric intake and weight gain in high-fat fed mice. Obesity 20:2003–2009

    CAS  PubMed  Google Scholar 

  16. Lee YH, Mottillo EP, Granneman JG (2014) Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta 1842:358–369

    CAS  PubMed  Google Scholar 

  17. Booth A, Magnuson A, Fouts J, Foster MT (2016) Adipose tissue: an endocrine organ playing a role in metabolic regulation. Horm Mol Biol Clin Invest 26:25–42

    CAS  Google Scholar 

  18. Hopps E, Caimi G (2012) Matrix metalloproteinases in metabolic syndrome. Eur J Int Med 23:99–104

    CAS  Google Scholar 

  19. Caria C, Gotardo EMF, Santos PS, Acedo SC, de Morais TR, Ribeiro ML et al (2017) Extracellular matrix remodeling and matrix metalloproteinase inhibition in visceral adipose during weight cycling in mice. Exp Cell Res 359:431–440

    CAS  PubMed  Google Scholar 

  20. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    CAS  PubMed  Google Scholar 

  21. Lijnen HR, Maquoi E, Hansen LB, Van Hoef B, Frederix L, Collen D (2002) Matrix metalloproteinase inhibition impairs adipose tissue development in mice. Arterioscler Thromb Vasc Biol 22:374–379

    CAS  PubMed  Google Scholar 

  22. Wang H, Yang Z, Gu J (2014) Therapeutic targeting of angiogenesis with a recombinant CTT peptide-endostatin mimic-kringle 5 protein. Mol Cancer Ther 13:2674–2687

    CAS  PubMed  Google Scholar 

  23. Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schürmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Müller TD, Tschöp MH (2018) Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 14:140–162

    PubMed  Google Scholar 

  24. Finan B, Yang B, Ottaway N, Smiley DL, Ma T, Clemmensen C, Chabenne J, Zhang L, Habegger KM, Fischer K, Campbell JE, Sandoval D, Seeley RJ, Bleicher K, Uhles S, Riboulet W, Funk J, Hertel C, Belli S, Sebokova E, Conde-Knape K, Konkar A, Drucker DJ, Gelfanov V, Pfluger PT, Müller TD, Perez-Tilve D, DiMarchi RD, Tschöp MH (2015) A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 21:27–36

    CAS  PubMed  Google Scholar 

  25. Attane C, Foussal C, Le Gonidec S, Benani A, Daviaud D, Wanecq E et al (2012) Apelin treatment increases complete fatty acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice. Diabetes 61:310–320

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nie Y, Gavin TP, Kuang S (2015) Measurement of resting energy metabolism in mice using Oxymax open circuit indirect calorimeter. Bio-protocol 5

  27. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmüller A, Gordts PLSM, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–205

    CAS  PubMed  Google Scholar 

  28. Kleiner S, Mepani RJ, Laznik D, Ye L, Jurczak MJ, Jornayvaz FR, Estall JL, Chatterjee Bhowmick D, Shulman GI, Spiegelman BM (2012) Development of insulin resistance in mice lacking PGC-1alpha in adipose tissues. Proc Natl Acad Sci U S A 109:9635–9640

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rajakumari S, Wu J, Ishibashi J, Lim HW, Giang AH, Won KJ, Reed RR, Seale P (2013) EBF2 determines and maintains brown adipocyte identity. Cell Metab 17:562–574

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu W, Shi F, Liu D, Ceddia RP, Gaffin R, Wei W et al (2017) Enhancing natriuretic peptide signaling in adipose tissue, but not in muscle, protects against diet-induced obesity and insulin resistance. Sci Signal 10

  31. Brakenhielm E, Cao R, Gao B, Angelin B, Cannon B, Parini P et al (2004) Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ Res 94:1579–1588

    CAS  PubMed  Google Scholar 

  32. Chao J, Huo TI, Cheng HY, Tsai JC, Liao JW, Lee MS, Qin XM, Hsieh MT, Pao LH, Peng WH (2014) Gallic acid ameliorated impaired glucose and lipid homeostasis in high fat diet-induced NAFLD mice. PLoS One 9:e96969

    PubMed  PubMed Central  Google Scholar 

  33. Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, Cushman SW, Periwal V (2009) Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput Biol 5:e1000324

    PubMed  PubMed Central  Google Scholar 

  34. Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033

    CAS  PubMed  Google Scholar 

  35. Maksimov ML, Svistunov AA, Tarasov VV, Chubarev VN, Avila-Rodriguez M, Barreto GE et al (2016) Approaches for the development of drugs for treatment of obesity and metabolic syndrome. Curr Pharm Des 22:895–903

    CAS  PubMed  Google Scholar 

  36. Leontieva OV, Paszkiewicz GM, Blagosklonny MV (2014) Weekly administration of rapamycin improves survival and biomarkers in obese male mice on high-fat diet. Aging Cell 13:616–622

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Silberberg M, Silberberg R (1954) Factors modifying the lifespan of mice. Am J Phys 177:23–26

    CAS  Google Scholar 

  38. Herz CT, Kiefer FW (2019) Adipose tissue browning in mice and humans. J Endocrinol 241:R97–R109

    CAS  PubMed  Google Scholar 

  39. Lo KA, Sun L (2013) Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci Rep 33

  40. Kusminski CM, Bickel PE, Scherer PE (2016) Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov 15:639–660

    CAS  PubMed  Google Scholar 

  41. Teicher BA (2011) Antiangiogenic agents and targets: a perspective. Biochem Pharmacol 81:6–12

    CAS  PubMed  Google Scholar 

  42. Cantelmo AR, Pircher A, Kalucka J, Carmeliet P (2017) Vessel pruning or healing: endothelial metabolism as a novel target? Expert Opin Ther Targets 21:239–247

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Goossens GH, Bizzarri A, Venteclef N, Essers Y, Cleutjens JP, Konings E, Jocken JW, Cajlakovic M, Ribitsch V, Clement K, et al. (2011) Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 124: 67–76. 45.Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, Rood JC, Burk DH, Smith SR (2009) Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58: 718–725

  44. Pasarica M, Rood J, Ravussin E, Schwarz JM, Smith SR, Redman LM (2010) Reduced oxygenation in human obese adipose tissue is associated with impaired insulin suppression of lipolysis. J Clin Endocrinol Metab 95:4052–4055

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Elias I, Franckhauser S, Ferre T, Vila L, Tafuro S, Munoz S, Roca C, Ramos D, Pujol A, Riu E, Ruberte J, Bosch F (2012) Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes 61:1801–1813

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Crewe C, An YA, Scherer PE (2017) The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest 127:74–82

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the grants from Ministry of Science and Technology, China (2016ZX09102).

Author information

Authors and Affiliations

Authors

Contributions

H. B.W and J. G designed the study. H. B.W and Y.J.S performed the study. H. B.W and J. G analyzed the data. H.B.W wrote the manuscript.

Corresponding author

Correspondence to Jun Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval and consent to participate

This study was performed according to the Guide for Care and Use of Laboratory Animals as adopted by the National Institute of Health and approved by the PeKing University Institutional Animal Care and Use committee (#2016010205).

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3.84 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Shi, Y. & Gu, J. A multitarget angiogenesis inhibitor, CTT peptide-endostatin mimic-kringle 5, prevents diet-induced obesity. J Mol Med 98, 1753–1765 (2020). https://doi.org/10.1007/s00109-020-01993-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01993-w

Keywords

Navigation