Skip to main content

Advertisement

Log in

Recombinant human endostatin as a potential anti-angiogenic agent: therapeutic perspective and current status

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Angiogenesis is the physiological process that results in the formation of new blood vessels develop from pre-existing vasculature and plays a significant role in several physiological and pathological processes. Inhibiting angiogenesis, a crucial mechanism in the growth and metastasis of cancer, has been proposed as a potential anticancer therapy. Different studies showed the beneficial effects of angiogenesis inhibitors either in patients suffering from different cancers, alone or in combination with conventional therapies. Even though there are currently a number of efficient anti-angiogenic drugs, including monoclonal antibodies and kinase inhibitors, the associated toxicity profile and their affordability constraints are prompting researchers to search for a safe and affordable angiostatic agent for cancer treatment. Endostatin is one of the endogenous anti-angiogenic candidates that have been extensively pursued for the treatment of cancer, but even over three decades after its discovery, we have not made much advancement in employing it as an anticancer therapeutic despite of its remarkable anti-angiogenic effect with low toxicity profile. A recombinant human endostatin (rh-Es) variant for non-small cell lung cancer was approved by China in 2006 and has since been used effectively. Several other successful clinical trials related to endostatin for various malignancies are either ongoing or have already been completed with promising results. Thus, in this review, we have provided an overview of existing anti-angiogenic drugs developed for cancer therapy, with a summary of tumour angiogenesis in the context of Endostatin, and clinical status of rh-Es in cancer treatment. Furthermore, we briefly discuss the various strategies to improve endostatin features (poor pharmacokinetic properties) for developing rh-Es as a safe and effective agent for cancer treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

Consent to publish

Not applicable.

Abbreviations

Bfgf:

Basic fibroblast growth factor

CBR:

Clinical beneficial rate

EC:

Endothelial cells

ECM:

Extracellular matrix

FDA:

Food and Drug Administration

FGF:

Fibroblast growth factor

HCC:

Hepatocellular carcinoma

HIF:

Hypoxia-inducible factor

HELP:

Half-life extension partners

IFN:

Interferon

KI:

Kinase inhibitor

mAb:

Monoclonal antibodies

MMP:

Matrix metalloproteinase

NMPA:

National Medical Products Administration

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

PCH:

Pulmonary capillary hemangiomatosis

PEG:

Polyethylene glycol

PK:

Pharmacokinetic

rh-Es:

Recombinant human endostatin

RPLS:

Reversible posterior leukoencephalopathy syndrome

RNA:

Ribonucleic acids

SFDA:

State Food and Drug Administration of China

SPARC:

Secreted Protein Acidic And Cysteine Rich

TGF:

Transforming growth factor

TNF:

Tumour necrosis factor

TS-2:

Transglutaminase-2

TSP-1:

Thrombospondin-1

VEGF:

Vascular endothelial growth factor

References

  1. Tumour-National Cancer Institute (NCI) dictionary of cancer terms. NCI; 2023. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/tumour. Accessed 3 March 2023.

  2. WHO. Cancer. World Health Organization (WHO); 2023. https://www.who.int. Accessed 3 March 2023.

  3. Upadhyay A. Cancer: An unknown territory; rethinking before going ahead. Genes Dis. 2021;8(5):655–61.

    Article  CAS  PubMed  Google Scholar 

  4. Luzzi KJ, MacDonald IC, Schmidt EE, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol. 1998;153(3):865–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones S, Chen WD, Parmigiani G, et al. Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci USA. 2008;105(11):4283–8.

    Article  CAS  PubMed Central  Google Scholar 

  6. Joensuu H. Systemic chemotherapy for cancer: from weapon to treatment. Lancet Oncol. 2008;9(3):304–304.

    Article  PubMed  Google Scholar 

  7. Borghaei H, Smith MR, Campbell KS. Immunotherapy of cancer. Eur J Pharmacol. 2009;625(1–3):41–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. El-Kenawi AE, El-Remessy AB. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br J Pharmacol. 2013;170(4):712–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ke X, Shen L. Molecular targeted therapy of cancer: the progress and future prospect. Front Lab Med. 2017;1(2):69–75.

    Article  Google Scholar 

  11. Abraham J, Ocen J, Staffurth J. Hormonal therapy for cancer. Medicine. 2022;44(1):30–3.

    Article  Google Scholar 

  12. Lacouture M, Sibaud V. Toxic side effects of targeted therapies and immunotherapies affecting the skin, oral mucosa, hair, and nails. Am J Clin Dermatol. 2018;19(Suppl 1):31–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Herrmann J. Vascular toxic effects of cancer therapies. Nat Rev Cardiol. 2020;17(8):503–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17(11):1359–70.

    Article  CAS  PubMed  Google Scholar 

  15. Katayama Y, Uchino J, Chihara Y, et al. Tumor neovascularization and developments in therapeutics. Cancers (Basel). 2019;11(3):316–316.

    Article  CAS  Google Scholar 

  16. Folkman J. Tumor angiogenesis. Adv Cancer Res. 1974;19:331–58.

    Article  CAS  PubMed  Google Scholar 

  17. Sun Y, Wang JW, Liu YY, et al. Long-term results of a randomized, double-blind, and placebo-controlled phase III trial: Endostar (rh-endostatin) versus placebo in combination with vinorelbine and cisplatin in advanced non-small cell lung cancer. Thorac Cancer. 2013;4(4):440–8.

    Article  CAS  PubMed  Google Scholar 

  18. Li BL, Hu XL, Zhao XH, Sun HG, Zhou CY, Zhang Y. Endostar combined with irinotecan/calcium folinate/5-fluorouracil (FOLFIRI) for treating advanced colorectal cancer: a clinical study. J Chemother. 2015;27(5):301–6.

    Article  CAS  PubMed  Google Scholar 

  19. Griffioen AW, Dudley AC. The rising impact of angiogenesis research. Angiogenesis. 2022;25(4):435–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2(3):213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem Sci. 1997;22(7):251–6.

    Article  CAS  PubMed  Google Scholar 

  22. Gupta MK, Qin RY. Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol. 2003;9(6):1144–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64.

    Article  CAS  PubMed  Google Scholar 

  24. Paku S, Paweletz N. First steps of tumor-related angiogenesis. Lab Investig. 1991;65(3):334–46.

    CAS  PubMed  Google Scholar 

  25. Aspriţoiu VM, Stoica I, Bleotu C, Diaconu CC. Epigenetic regulation of angiogenesis in development and tumors progression: potential implications for cancer treatment. Front Cell Dev Biol. 2021;9: 689962.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–6.

    Article  CAS  Google Scholar 

  27. De Spiegelaere W, Casteleyn C, Van den Broeck W, et al. Intussusceptive angiogenesis: a biologically relevant form of angiogenesis [published correction appears in J Vasc Res. 2012;49(5):416]. J Vasc Res. 2012;49(5):390–404.

    PubMed  Google Scholar 

  28. Karthik S, Djukic T, Kim JD, et al. Synergistic interaction of sprouting and intussusceptive angiogenesis during zebrafish caudal vein plexus development [published correction appears in Sci Rep. 2019 Mar 6;9(1):4152]. Sci Rep. 2018;8(1):9840–9840.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Handsley MM, Edwards DR. Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer. 2005;115(6):849–60.

    Article  CAS  PubMed  Google Scholar 

  30. Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: regulators and clinical implications. Med Res Rev. 2017;37(6):1231–74.

    Article  PubMed  Google Scholar 

  31. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77(9):1745–70.

    Article  CAS  PubMed  Google Scholar 

  32. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA. 1986;83(19):7297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hashimoto T, Shibasaki F. Hypoxia-inducible factor as an angiogenic master switch. Front Pediatr. 2015;3:33–33.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gopinathan G, Milagre C, Pearce OM, et al. Interleukin-6 stimulates defective angiogenesis. Cancer Res. 2015;75(15):3098–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kopec M, Abramczyk H. The role of pro- and antiangiogenic factors in angiogenesis process by Raman spectroscopy. Spectrochim Acta A. 2022;268: 120667.

    Article  CAS  Google Scholar 

  36. Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin. 2010;60(4):222–43.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ide AG. Vascularization of the Brown-Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am J Roentgenol. 1939;42:891–891.

    Google Scholar 

  38. Ribatti D, Vacca A, Dammacco F. The role of the vascular phase in solid tumor growth: a historical review. Neoplasia. 1999;1(4):293–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li T, Kang G, Wang T, Huang H. Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol Lett. 2018;16(1):687–702.

    PubMed  PubMed Central  Google Scholar 

  40. Brouty-Boyé D, Zetter BR. Inhibition of cell motility by interferon. Science. 1980;208(4443):516–8.

    Article  Google Scholar 

  41. Ezekowitz RA, Mulliken JB, Folkman J. Interferon alfa-2a therapy for life-threatening hemangiomas of infancy [published correction appears in N Engl J Med 1994 Jan 27;330(4):300] [published correction appears in N Engl J Med 1994 Jan 27;330(4):300]. N Engl J Med. 1992;326(22):1456–63.

    Article  CAS  PubMed  Google Scholar 

  42. Kaban LB, Mulliken JB, Ezekowitz RA, Ebb D, Smith PS, Folkman J. Antiangiogenic therapy of a recurrent giant cell tumor of the mandible with interferon alfa-2a. Pediatrics. 1999;103(6 Pt 1):1145–9.

    Article  CAS  Google Scholar 

  43. Kaban LB, Troulis MJ, Ebb D, August M, Hornicek FJ, Dodson TB. Antiangiogenic therapy with interferon alpha for giant cell lesions of the jaws. J Oral Maxillofac Surg. 2002;60(10):1103–13.

    Article  PubMed  Google Scholar 

  44. Ginns LC, Roberts DH, Mark EJ, Brusch JL, Marler JJ. Pulmonary capillary hemangiomatosis with atypical endotheliomatosis: successful antiangiogenic therapy with doxycycline. Chest. 2003;124(5):2017–22.

    Article  Google Scholar 

  45. National Library of Medicine-National Center for Biotechnology. Information-Interferon. National Library of Medicine-National Center for Biotechnology; 2023. https://www.ncbi.nlm.nih.gov/books/NBK555932/. Accessed 2 Feb 2023.

  46. National Cancer Institute. Angiogenesis inhibitors. National Cancer Institute; 2023. https://www.cancer.gov/. Accessed 4 Feb 2023.

  47. Zirlik K, Duyster J. Anti-angiogenics: current situation and future perspectives. Oncol Res Treat. 2018;41(4):166–71.

    Article  CAS  Google Scholar 

  48. Collett MS, Erikson RL. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci USA. 1978;75(4):2021–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bhullar KS, Lagarón NO, McGowan EM, et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 2018;17(1):48–48.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Karaman MW, Herrgard S, Treiber DK, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26(1):127–32.

    Article  CAS  PubMed  Google Scholar 

  51. Vaughn C, Zhang L, Schiff D. Reversible posterior leukoencephalopathy syndrome in cancer. Curr Oncol Rep. 2008;10(1):86–91.

    Article  PubMed  Google Scholar 

  52. Raina S, Mahesh D, Rajendra G, Chauhan NS. Reversible posterior leukoencephalopathy syndrome. J Neurosci Rural Pract. 2012;3(2):222–4.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Myint ZW, Sen JM, Watts NL, et al. Reversible posterior leukoencephalopathy syndrome during regorafenib treatment: a case report and literature review of reversible posterior leukoencephalopathy syndrome associated with multikinase inhibitors. Clin Colorectal Cancer. 2014;13(2):127–30.

    Article  PubMed  Google Scholar 

  54. Martín G, Bellido L, Cruz JJ. Reversible posterior leukoencephalopathy syndrome induced by sunitinib. J Clin Oncol. 2007;25(23):3559–3559.

    Article  PubMed  Google Scholar 

  55. Chen A, Agarwal N. Reversible posterior leucoencephalopathy syndrome associated with sunitinib. Int Med J. 2009;39(5):341–2.

    Article  CAS  Google Scholar 

  56. Padhy BM, Shanmugam SP, Gupta YK, Goyal A. Reversible posterior leucoencephalopathy syndrome in an elderly male on sunitinib therapy. Br J Clin Pharmacol. 2011;71(5):777–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hadj JO, Braven RD, Tillier C, Schrijver HM, Verheul HM, Van Der Vliet HJ. Reversible posterior leukoencephalopathy syndrome during sunitinib therapy for metastatic renal cell carcinoma. Oncol Lett. 2012;3(6):1293–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rini BI, Escudier B, Tomczak P, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial [published correction appears in Lancet. 2012 Nov 24;380(9856):1818]. Lancet. 2011;378(9807):1931–9.

    Article  CAS  PubMed  Google Scholar 

  59. Rini BI, Tamaskar I, Shaheen P, et al. Hypothyroidism in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst. 2007;99(1):81–3.

    Article  CAS  PubMed  Google Scholar 

  60. Tamaskar I, Bukowski R, Elson P, et al. Thyroid function test abnormalities in patients with metastatic renal cell carcinoma treated with sorafenib. Ann Oncol. 2008;19(2):265–8.

    Article  CAS  PubMed  Google Scholar 

  61. Baldazzi V, Tassi R, Lapini A, et al. Sunitinib-induced hyperparathyroidism: a possible mechanism to altered bone homeostasis. Cancer. 2012;118(12):3165–72.

    Article  CAS  PubMed  Google Scholar 

  62. Agrillo A, Nastro Siniscalchi E, Facchini A, Filiaci F, Ungari C. Osteonecrosis of the jaws in patients assuming bisphosphonates and sunitinib: two case reports. Eur Rev Med Pharmacol Sci. 2012;16(7):952–7.

    CAS  PubMed  Google Scholar 

  63. Lodish MB. Clinical review: kinase inhibitors: adverse effects related to the endocrine system. J Clin Endocrinol Metab. 2013;98(4):1333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Orphanos GS, Ioannidis GN, Ardavanis AG. Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol. 2009;48(7):964–70.

    Article  CAS  PubMed  Google Scholar 

  65. Shah DR, Shah RR, Morganroth J. Tyrosine kinase inhibitors: their on-target toxicities as potential indicators of efficacy. Drug Saf. 2013;36(6):413–26.

    Article  CAS  PubMed  Google Scholar 

  66. Krämer I, Lipp HP. Bevacizumab, a humanized anti-angiogenic monoclonal antibody for the treatment of colorectal cancer. J Clin Pharm Ther. 2007;32(1):1–14.

    Article  PubMed  Google Scholar 

  67. Cunningham O, Scott M, Zhou ZS, Finlay WJJ. Polyreactivity and polyspecificity in therapeutic antibody development: risk factors for failure in preclinical and clinical development campaigns. MAbs. 2021;13(1):1999195.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Méndez-Valdés G, Gómez-Hevia F, Lillo-Moya J, et al. Endostatin and cancer therapy: a novel potential alternative to anti-VEGF monoclonal antibodies. Biomedicines. 2023;11(3):718–718.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sandeep, Shinde SH, Pande AH. Polyspecificity—an emerging trend in the development of clinical antibodies. Mol Immunol. 2023;155:175–183

  70. Wakelee HA, Dahlberg SE, Keller SM, et al. Adjuvant chemotherapy with or without bevacizumab in patients with resected non-small-cell lung cancer (E1505): an open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 2017;18(12):1610–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Peter S, Hausmann N, Schuster A, Boehm HF. Reversible posterior leukoencephalopathy syndrome and intravenous bevacizumab. Clin Exp Ophthalmol. 2008;36(1):94–6.

    Article  PubMed  Google Scholar 

  72. Chang Y, Mbeo G, Littman SJ. Reversible posterior leukoencephalopathy syndrome associated with concurrent bevacizumab, gemcitabine, and oxaliplatin for cholangiocarcinoma. J Gastrointest Cancer. 2012;43(3):505–7.

    Article  CAS  PubMed  Google Scholar 

  73. Wang W, Zhao LR, Lin XQ, Feng F. Reversible posterior leukoencephalopathy syndrome induced by bevacizumab plus chemotherapy in colorectal cancer. World J Gastroenterol. 2014;20(21):6691–7.

    Article  PubMed Central  Google Scholar 

  74. Eryılmaz MK, Mutlu H, Salim DK, Musri FY, Coşkun HŞ. Fatal posterior reversible leukoencephalopathy syndrome associated coma induced by bevacizumab in metastatic colorectal cancer and review of literature. J Oncol Pharm Pract. 2016;22(6):806–10.

    Article  PubMed  Google Scholar 

  75. Hernandez I, Bott SW, Patel AS, et al. Pricing of monoclonal antibody therapies: higher if used for cancer? Am J Manag Care. 2018;24(2):109–12.

    PubMed  Google Scholar 

  76. Kropff MH, Lang N, Bisping G, et al. Hyperfractionated cyclophosphamide in combination with pulsed dexamethasone and thalidomide (HyperCDT) in primary refractory or relapsed multiple myeloma. Br J Haematol. 2003;122(4):607–16.

    Article  CAS  PubMed  Google Scholar 

  77. Miller MT, Strömland KK. What can we learn from the thalidomide experience: an ophthalmologic perspective. Curr Opin Ophthalmol. 2011;22(5):356–64.

    Article  PubMed  Google Scholar 

  78. Johnson DC, Corthals SL, Walker BA, et al. Genetic factors underlying the risk of thalidomide-related neuropathy in patients with multiple myeloma. J Clin Oncol. 2011;29(7):797–804.

    Article  CAS  PubMed  Google Scholar 

  79. Thoreau F, Chudasama V. Enabling the next steps in cancer immunotherapy: from antibody-based bispecifics to multispecifics, with an evolving role for bioconjugation chemistry. RSC Chem Biol. 2021;3(2):140–69.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 1997;390(6658):404–7.

    Article  CAS  PubMed  Google Scholar 

  81. Walia A, Yang JF, Huang YH, Rosenblatt MI, Chang JH, Azar DT. Endostatin’s emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. Biochim Biophys Acta. 2015;1850(12):2422–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.

    Article  CAS  PubMed  Google Scholar 

  83. O’Reilly MS, Holmgren L, Chen C, Folkman J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med. 1996;2(6):689–92.

    Article  CAS  Google Scholar 

  84. O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol. 1994;59:471–82.

    Article  CAS  Google Scholar 

  85. Ribatti D. The history of angiogenesis inhibitors. Leukemia. 2007;21(8):1606–9.

    Article  CAS  PubMed  Google Scholar 

  86. O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88(2):277–85.

    Article  CAS  PubMed  Google Scholar 

  87. Kisker O, Becker CM, Prox D, et al. Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res. 2001;61(20):7669–74.

    CAS  PubMed  Google Scholar 

  88. Li K, Shi M, Qin S. Current status and study progress of recombinant human endostatin in cancer treatment. Oncol Ther. 2018;6(1):21–43.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sasaki T, Fukai N, Mann K, Göhring W, Olsen BR, Timpl R. Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J. 1998;17(15):4249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sasaki T, Larsson H, Tisi D, Claesson-Welsh L, Hohenester E, Timpl R. Endostatins derived from collagens XV and XVIII differ in structural and binding properties, tissue distribution and anti-angiogenic activity. J Mol Biol. 2000;301(5):1179–90.

    Article  CAS  PubMed  Google Scholar 

  91. Zatterstrom UK, Felbor U, Fukai N, Olsen BR. Collagen XVIII/endostatin structure and functional role in angiogenesis. Cell Struct Funct. 2000;25(2):97–101.

    Article  CAS  PubMed  Google Scholar 

  92. Sasaki T, Hohenester E, Timpl R. Structure and function of collagen-derived endostatin inhibitors of angiogenesis. IUBMB Life. 2002;53(2):77–84.

    Article  CAS  PubMed  Google Scholar 

  93. John H, Forssmann WG. Determination of the disulfide bond pattern of the endogenous and recombinant angiogenesis inhibitor endostatin by mass spectrometry. Rapid Commun Mass Spectrom. 2001;15(14):1222–8.

    Article  CAS  PubMed  Google Scholar 

  94. Han Q, Fu Y, Zhou H, He Y, Luo Y. Contributions of Zn(II)-binding to the structural stability of endostatin. FEBS Lett. 2007;581(16):3027–32.

    Article  CAS  Google Scholar 

  95. Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, Mothes W. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 2000;19(6):1187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jagodic M, Vrhovec I, Borstnar S, Cufer T. Prognostic and predictive value of cathepsins D and L in operable breast cancer patients. Neoplasma. 2005;52(1):1–9.

    CAS  PubMed  Google Scholar 

  97. Sullivan S, Tosetto M, Kevans D, et al. Localization of nuclear cathepsin L and its association with disease progression and poor outcome in colorectal cancer. Int J Cancer. 2009;125(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  98. Miyamoto K, Iwadate M, Yanagisawa Y, et al. Cathepsin L is highly expressed in gastrointestinal stromal tumors. Int J Oncol. 2011;39(5):1109–15.

    CAS  PubMed  Google Scholar 

  99. Ruan J, Zheng H, Fu W, Zhao P, Su N, Luo R. Increased expression of cathepsin L: a novel independent prognostic marker of worse outcome in hepatocellular carcinoma patients. PLoS ONE. 2014;9(11): 112136.

    Article  Google Scholar 

  100. Wen W, Moses MA, Wiederschain D, Arbiser JL, Folkman J. The generation of endostatin is mediated by elastase. Cancer Res. 1999;59(24):6052–6.

    CAS  PubMed  Google Scholar 

  101. Ferreras M, Felbor U, Lenhard T, Olsen BR, Delaissé J. Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett. 2000;486(3):247–51.

    Article  CAS  PubMed  Google Scholar 

  102. Poluzzi C, Iozzo RV, Schaefer L. Endostatin and endorepellin: a common route of action for similar angiostatic cancer avengers. Adv Drug Deliv Rev. 2016;97:156–73.

    Article  CAS  PubMed  Google Scholar 

  103. Pedram A, Razandi M, Levin ER. Extracellular signal-regulated protein kinase/Jun kinase cross-talk underlies vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem. 1998;273(41):26722–8.

    Article  CAS  PubMed  Google Scholar 

  104. Kim YM, Hwang S, Kim YM, et al. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem. 2002;277(31):27872–9.

    Article  CAS  PubMed  Google Scholar 

  105. Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res. 2006;12(17):5018–22.

    Article  CAS  PubMed  Google Scholar 

  106. Han KY, Azar DT, Sabri A, et al. Characterization of the interaction between endostatin short peptide and VEGF receptor 3. Protein Pept Lett. 2012;19(9):969–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wickström SA, Alitalo K, Keski-Oja J. Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res. 2002;62(19):5580–9.

    PubMed  Google Scholar 

  108. Thomas S, Overdevest JB, Nitz MD, et al. Src and caveolin-1 reciprocally regulate metastasis via a common downstream signaling pathway in bladder cancer. Cancer Res. 2011;71(3):832–41.

    Article  CAS  PubMed  Google Scholar 

  109. Nah J, Yoo SM, Jung S, et al. Phosphorylated CAV1 activates autophagy through an interaction with BECN1 under oxidative stress. Cell Death Dis. 2017;8(5):2822.

    Article  Google Scholar 

  110. Sasaki T, Larsson H, Kreuger J, et al. Structural basis and potential role of heparin/heparan sulfate binding to the angiogenesis inhibitor endostatin. EMBO J. 1999;18(22):6240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Karumanchi SA, Jha V, Ramchandran R, et al. Cell surface glypicans are low-affinity endostatin receptors. Mol Cell. 2001;7(4):811–22.

    Article  CAS  PubMed  Google Scholar 

  112. Reis RC, Schuppan D, Barreto AC, et al. Endostatin competes with bFGF for binding to heparin-like glycosaminoglycans. Biochem Biophys Res Commun. 2005;333(3):976–83.

    Article  CAS  Google Scholar 

  113. Shi H, Huang Y, Zhou H, et al. Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood. 2007;110(8):2899–906.

    Article  CAS  PubMed  Google Scholar 

  114. Faye C, Chautard E, Olsen BR, Ricard-Blum S. The first draft of the endostatin interaction network. J Biol Chem. 2009;284(33):22041–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Faye C, Inforzato A, Bignon M, et al. Transglutaminase-2: a new endostatin partner in the extracellular matrix of endothelial cells. Biochem J. 2010;427(3):467–75.

    Article  CAS  PubMed  Google Scholar 

  116. Goyanes AM, Moldobaeva A, Marimoutou M, et al. Functional impact of human genetic variants of COL18A1/endostatin on pulmonary endothelium. Am J Respir Cell Mol Biol. 2020;62(4):524–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Song N, Ding Y, Zhuo W, et al. The nuclear translocation of endostatin is mediated by its receptor nucleolin in endothelial cells. Angiogenesis. 2012;15(4):697–711.

    Article  CAS  PubMed  Google Scholar 

  118. Good DJ, Polverini PJ, Rastinejad F, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA. 1990;87(17):6624–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bagavandoss P, Wilks JW. Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem Biophys Res Commun. 1990;170(2):867–72.

    Article  CAS  PubMed  Google Scholar 

  120. Taraboletti G, Roberts D, Liotta LA, Giavazzi R. Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: a potential angiogenesis regulatory factor. J Cell Biol. 1990;111(2):765–72.

    Article  CAS  PubMed  Google Scholar 

  121. Lawler PR, Lawler J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med. 2012;2(5):6627.

    Article  Google Scholar 

  122. Dardik R, Inbal A. Complex formation between tissue transglutaminase II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): proposed mechanism for modulation of endothelial cell response to VEGF. Exp Cell Res. 2006;312(16):2973–82.

    Article  CAS  PubMed  Google Scholar 

  123. Shu H, Dong Y, Xu Z, et al. The efficacy and safety of continuous intravenous endostar treatment combined with concurrent chemoradiotherapy in patients with locally advanced cervical squamous cell carcinoma: a randomized controlled trial. Front Oncol. 2021;11: 723193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cunningham C, Bolcaen J, Bisio A, Genis A, Strijdom H, Vandevoorde C. Recombinant endostatin as a potential radiosensitizer in the treatment of non-small cell lung cancer. Pharmaceuticals (Basel). 2023;16(2):219–219.

    Article  CAS  PubMed  Google Scholar 

  125. Eder JP Jr, Supko JG, Clark JW, et al. Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol. 2002;20(18):3772–84.

    Article  CAS  PubMed  Google Scholar 

  126. Herbst RS, Hess KR, Tran HT, et al. Phase I study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol. 2002;20(18):3792–803.

    Article  CAS  PubMed  Google Scholar 

  127. Thomas JP, Arzoomanian RZ, Alberti D, et al. Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol. 2003;21(2):223–31.

    Article  CAS  Google Scholar 

  128. Hansma AH, Broxterman HJ, van der Horst I, et al. Recombinant human endostatin administered as a 28-day continuous intravenous infusion, followed by daily subcutaneous injections: a phase I and pharmacokinetic study in patients with advanced cancer. Ann Oncol. 2005;16(10):1695–701.

    Article  CAS  PubMed  Google Scholar 

  129. Kulke MH, Bergsland EK, Ryan DP, et al. Phase II study of recombinant human endostatin in patients with advanced neuroendocrine tumors. J Clin Oncol. 2006;24(22):3555–61.

    Article  CAS  Google Scholar 

  130. Whitworth A. Endostatin: are we waiting for Godot? J Natl Cancer Inst. 2006;98(11):731–3.

    Article  PubMed  Google Scholar 

  131. Fu Y, Tang H, Huang Y, Song N, Luo Y. Unraveling the mysteries of endostatin. IUBMB Life. 2009;61(6):613–26.

    Article  CAS  PubMed  Google Scholar 

  132. Folkman J. Endostatin finds a new partner: nucleolin. Blood J Am Soc Hematol. 2007;110(8):2786–7.

    CAS  Google Scholar 

  133. Hurwitz H. Integrating the anti-VEGF-A humanized monoclonal antibody bevacizumab with chemotherapy in advanced colorectal cancer. Clin Colorectal Cancer. 2004;4(Suppl 2):S62–8.

    Article  CAS  PubMed  Google Scholar 

  134. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42.

    Article  CAS  PubMed  Google Scholar 

  135. Gasparini G, Longo R, Fanelli M, Teicher BA. Combination of antiangiogenic therapy with other anticancer therapies: results, challenges, and open questions. J Clin Oncol. 2005;23(6):1295–311.

    Article  CAS  PubMed  Google Scholar 

  136. Boehm T, O’reilly MS, Keough K, Shiloach J, Shapiro R, Folkman J. Zinc-binding of endostatin is essential for its antiangiogenic activity. Biochem Biophys Res Commun. 1998;252(1):190–4.

    Article  CAS  PubMed  Google Scholar 

  137. Yang L, Wang JW, Sun Y, et al. Randomized phase II trial on escalated doses of Rh-endostatin (YH-16) for advanced non-small cell lung cancer. Chin J Oncol. 2006;28(2):138–41.

    Google Scholar 

  138. Wang J, Sun Y, Liu Y, et al. Results of randomized, multicenter, double-blind phase III trial of rh-endostatin (YH-16) in treatment of advanced non-small cell lung cancer patients. Zhongguo Fei Ai Za Zhi. 2005;8(4):283–90.

    PubMed  Google Scholar 

  139. Zhong Q, Tao Y, Chen H, et al. The changing landscape of anti-lung cancer drug clinical trials in mainland China from 2005 to 2020. Lancet Reg Health West Pac. 2021;11:100151–100151.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Jiang XD, Ding MH, Qiao Y, Liu Y, Liu L. Study on lung cancer cells expressing VEGFR2 and the impact on the effect of RHES combined with radiotherapy in the treatment of brain metastases. Clin Lung Cancer. 2014;15(2):e23–9.

    Article  PubMed  Google Scholar 

  141. Zhang R, Wang ZY, Li YH, et al. Usefulness of dynamic contrast-enhanced magnetic resonance imaging for predicting treatment response to vinorelbine–cisplatin with or without recombinant human endostatin in bone metastasis of non-small cell lung cancer. Am J Cancer Res. 2016;6(12):2890–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Xu HX, Huang XE, Qian ZY, Xu X, Li Y, Li CG. Clinical observation of Endostar® combined with chemotherapy in advanced colorectal cancer patients. Asian Pac J Cancer Prev. 2011;12(11):3087–90.

    PubMed  Google Scholar 

  143. Pan Y, Jiao G. Short-term therapeutic effect of Endostar combined with chemotherapy for advanced colorectal cancer: a meta-analysis. Nan Fang Yi Ke Da Xue Xue Bao. 2014;34(2):270–4.

    CAS  PubMed  Google Scholar 

  144. Huang W, Liu J, Wu F, et al. The efficacy and safety of endostar combined with taxane-based regimens for HER-2-negative metastatic breast cancer patients. Oncotarget. 2016;7(21):31501–7.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66–66.

    Article  PubMed  Google Scholar 

  146. Tolleson WH. Human melanocyte biology, toxicology, and pathology. J Environ Sci Health C. 2005;23(2):105–61.

    Article  Google Scholar 

  147. Lee B, Mukhi N, Liu D. Current management and novel agents for malignant melanoma. J Hematol Oncol. 2012;5:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Falkson CI, Ibrahim J, Kirkwood JM, Coates AS, Atkins MB, Blum RH. Phase III trial of dacarbazine versus dacarbazine with interferon alpha-2b versus dacarbazine with tamoxifen versus dacarbazine with interferon alpha-2b and tamoxifen in patients with metastatic malignant melanoma: an Eastern Cooperative Oncology Group study. J Clin Oncol. 1998;16(5):1743–51.

    Article  CAS  PubMed  Google Scholar 

  149. Middleton MR, Grob JJ, Aaronson N, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma [published correction appears in J Clin Oncol 2000 Jun; 18(11):2351]. J Clin Oncol. 2000;18(1):158–66.

    Article  CAS  PubMed  Google Scholar 

  150. Avril MF, Aamdal S, Grob JJ, et al. Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a phase III study. J Clin Oncol. 2004;22(6):1118–25.

    Article  CAS  PubMed  Google Scholar 

  151. Cui C, Mao L, Chi Z, et al. A phase II, randomized, double-blind, placebo-controlled multicenter trial of Endostar in patients with metastatic melanoma. Mol Ther. 2013;21(7):1456–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Misaghi A, Goldin A, Awad M, Kulidjian AA. Osteosarcoma: a comprehensive review. SICOT J. 2018;4:12–12.

    Article  PubMed  PubMed Central  Google Scholar 

  153. American Cancer Society. Osteosarcoma. American Cancer Society; 2023. https://www.cancer.org/cancer/osteosarcoma.html. Accessed 3 March 2023.

  154. Xu M, Xu CX, Bi WZ, et al. Effects of endostar combined multidrug chemotherapy in osteosarcoma. Bone. 2013;57(1):111–5.

    Article  CAS  PubMed  Google Scholar 

  155. Chen Z, Guo W, Cao J, et al. Endostar in combination with modified FOLFOX6 as an initial therapy in advanced colorectal cancer patients: a phase I clinical trial. Cancer Chemother Pharmacol. 2015;75(3):547–57.

    Article  CAS  Google Scholar 

  156. Hanna NN, Seetharam S, Mauceri HJ, et al. Antitumor interaction of short-course endostatin and ionizing radiation. Cancer J. 2000;6(5):287–93.

    CAS  PubMed  Google Scholar 

  157. Dkhissi F, Lu H, Soria C, et al. Endostatin exhibits a direct antitumor effect in addition to its antiangiogenic activity in colon cancer cells. Hum Gene Ther. 2003;14(10):997–1008.

    Article  CAS  PubMed  Google Scholar 

  158. Bruns CJ, Harbison MT, Davis DW, et al. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin Cancer Res. 2000;6(5):1936–48.

    CAS  Google Scholar 

  159. Raut CP, Takamori RK, Davis DW, Sweeney-Gotsch B, O’Reilly MS, McConkey DJ. Direct effects of recombinant human endostatin on tumor cell IL-8 production are associated with increased endothelial cell apoptosis in an orthotopic model of human pancreatic cancer [published correction appears in Cancer Biol Ther. 2009 May;8(10):984]. Cancer Biol Ther. 2004;3(7):679–87.

    Article  CAS  PubMed  Google Scholar 

  160. Arslan AE, Simsek E, Fidan KA, Fiskin K. Endostatin enhances radioresponse in breast cancer cells via alteration of substance P levels. Oncol Lett. 2011;2(5):879–86.

    Google Scholar 

  161. Aydemir EA, Şimşek E, Korcum AF, Fişkin K. Endostatin and irradiation modifies the activity of ADAM10 and neprilysin in breast cancer cells. Mol Med Rep. 2016;14(3):2343–51.

    Article  CAS  PubMed  Google Scholar 

  162. Wang B, Wang X, Wayne C, et al. Production of a therapeutic protein by fusing it with two fragments of the carboxyl-terminal peptide of human chorionic gonadotropin β-subunit in Pichia pastoris. Biotechnol Lett. 2016;38(5):801–7.

    Article  CAS  PubMed  Google Scholar 

  163. Limaverde-Sousa G, Sternberg C, Ferreira CG. Antiangiogenesis beyond VEGF inhibition: a journey from antiangiogenic single-target to broad-spectrum agents. Cancer Treat Rev. 2014;40(4):548–57.

    Article  CAS  PubMed  Google Scholar 

  164. Tang L, Persky AM, Hochhaus G, Meibohm B. Pharmacokinetic aspects of biotechnology products. J Pharm Sci. 2004;93(9):2184–204.

    Article  CAS  PubMed  Google Scholar 

  165. Kontermann RE. Half-life extended biotherapeutics [published correction appears in Expert Opin Biol Ther. 2016 Sep;16(9):1179]. Expert Opin Biol Ther. 2016;16(7):903–15.

    Article  CAS  PubMed  Google Scholar 

  166. Iyengar ARS, Gupta S, Jawalekar S, Pande AH. Protein chimerization: a new frontier for engineering protein therapeutics with improved pharmacokinetics. J Pharmacol Exp Ther. 2019;370(3):703–14.

    Article  CAS  PubMed  Google Scholar 

  167. Zaman R, Islam RA, Ibnat N, et al. Current strategies in extending half-lives of therapeutic proteins. J Control Release. 2019;301:176–89.

    Article  CAS  PubMed  Google Scholar 

  168. Tryggvason K, Wartiovaara J. How does the kidney filter plasma? Physiology (Bethesda). 2005;20:96–101.

    PubMed  Google Scholar 

  169. Strohl WR. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs. 2015;29(4):215–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometr Syst Pharmacol. 2017;6(9):576–88.

    Article  CAS  Google Scholar 

  171. Meibohm B. Pharmacokinetics and half‐life of protein therapeutics. In: Therapeutic proteins: strategies to modulate their plasma half‐lives. New York: Wiley; 2012, pp. 23–38.

  172. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25.

    Article  CAS  PubMed  Google Scholar 

  173. Schmidt SR. Fusion-proteins as biopharmaceuticals—applications and challenges. Curr Opin Drug Discov Dev. 2009;12(2):284–95.

    CAS  Google Scholar 

  174. Sockolosky JT, Szoka FC. The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy. Adv Drug Deliv Rev. 2015;91:109–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58.

    Article  CAS  PubMed  Google Scholar 

  176. Fee CJ, Van Alstine JM. Purification of pegylated proteins. Methods Biochem Anal. 2011;54:339–62.

    Article  CAS  PubMed  Google Scholar 

  177. Li L, Wang Y, Chen J, et al. An engineered arginase FC protein inhibits tumor growth in vitro and in vivo. Evid Based Complement Altern Med. 2013;2013:423129.

    Google Scholar 

  178. Haeckel A, Appler F, Ariza de Schellenberger A, Schellenberger E. XTEN as biological alternative to pegylation allows complete expression of a protease-activatable killin-based cytostatic. PLoS ONE. 2016;11(6):e0157193.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Anakha J, Kawathe PS, Datta S, Jawalekar SS, Banerjee UC, Pande AH. Human arginase 1, a Jack of all trades? 3 Biotech. 2022;12(10):264–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Schlapschy M, Theobald I, Mack H, Schottelius M, Wester HJ, Skerra A. Fusion of a recombinant antibody fragment with a homo-amino-acid polymer: effects on biophysical properties and prolonged plasma half-life. Protein Eng Des Sel. 2007;20(6):273–84.

    Article  CAS  PubMed  Google Scholar 

  181. Aghaabdollahian S, Ahangari Cohan R, Norouzian D, et al. Enhancing bioactivity, physicochemical, and pharmacokinetic properties of a nano-sized, anti-VEGFR2 Adnectin, through PASylation technology. Sci Rep. 2019;9(1):2978.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Sockolosky JT, Tiffany MR, Szoka FC. Engineering neonatal Fc receptor-mediated recycling and transcytosis in recombinant proteins by short terminal peptide extensions. Proc Natl Acad Sci USA. 2012;109(40):16095–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22(6):868–76.

    Article  CAS  PubMed  Google Scholar 

  184. Dobariya P, Adhya P, Vaidya B, Khandave PY, Sharma SS, Pande AH. Fused human paraoxonase 1 as a prophylactic agent against organophosphate poisoning. Enzyme Microb Technol. 2023;165: 110209.

    Article  CAS  PubMed  Google Scholar 

  185. US FDA. Food and Drug Administration; 2023. https://www.fda.gov. Accessed 3 March 2023.

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JA and PKD involved in conceptualization, data curation, and original draft preparation. SSS and AHP involved in reviewing and editing of manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abhay H. Pande.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anakha, J., Dobariya, P., Sharma, S.S. et al. Recombinant human endostatin as a potential anti-angiogenic agent: therapeutic perspective and current status. Med Oncol 41, 24 (2024). https://doi.org/10.1007/s12032-023-02245-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02245-w

Keywords

Navigation