Skip to main content
Log in

Treatment of murine colitis by Saccharomyces boulardii secreting atrial natriuretic peptide

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease is a lifelong disorder that involves chronic inflammation in the small and large intestines. Current therapies, including aminosalicylates, corticosteroids, and anti-inflammatory biologics, can only alleviate the symptoms and often cause adverse effects with long-term usage. Engineered probiotics provide an alternative approach to treat inflammatory bowel disease in a self-renewable and local delivery fashion. In this work, we utilized a yeast probiotic Saccharomyces boulardii for this purpose. We developed a robust method to integrate recombinant genes into the Ty elements of S. boulardii. Stable yeast cell lines that secreted various anti-inflammatory proteins, including IL-10, TNFR1-ECD, alkaline phosphatase, and atrial natriuretic peptide (ANP), were successfully created and investigated for their efficacies to the DSS-induced colitis in mice through oral administration. While IL-10, TNFR1-ECD, and alkaline phosphatase did not show therapeutic effects, the ANP-secreting S. boulardii effectively ameliorated the mouse conditions as reflected by the improvements in body weight, disease activity index, and survival rate. A post-mortem examination revealed that the ANP-treated mice exhibited significant downregulations of TNF-α and IL-1β and an upregulation of IL-6 in colon tissues. This observation is consistent with the previous reports showing that TNF-α and IL-1β are responsible for initiating the pathogenesis, whereas IL-6 plays a protective role in colitis. Overall, we demonstrated that S. boulardii is a safe and robust vehicle for recombinant protein delivery in the gastrointestinal tract, and ANP is a potential anti-inflammatory drug for colitis treatment.

Key messages

  • Recombinant genes can be robustly integrated into the transposable elements of S. boulardii.

  • Oral administration of S. boulardii secreting IL-10 or TNF-α inhibitor did not exert therapeutic effects for DSS-induced colitis in mice.

  • Atrial natriuretic peptide–secreting S. boulardii effectively ameliorated the murine colitis as reflected by improved body weight, disease activity index, and survival rate.

  • The ANP-treated mice exhibited decreased mRNA levels of TNF-α and IL-1β and an increased mRNA level of IL-6 in colon tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guan Q (2019) A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res 2019:7247238

    PubMed  PubMed Central  Google Scholar 

  2. Bernstein CN, Shanahan F (2008) Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut 57:1185–1191

    PubMed  Google Scholar 

  3. Kaplan GG, Ng SC (2017) Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology 152(313-321):e312

    Google Scholar 

  4. Eisenstein M (2016) Biology: A slow-motion epidemic. Nature 540:S98–S99

    CAS  PubMed  Google Scholar 

  5. Ko JK, Auyeung KK (2014) Inflammatory bowel disease: etiology, pathogenesis and current therapy. Curr Pharm Des 20:1082–1096

    CAS  PubMed  Google Scholar 

  6. Fiocchi C (1998) Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 115:182–205

    CAS  Google Scholar 

  7. van Loo ES, Dijkstra G, Ploeg RJ, Nieuwenhuijs VB (2012) Prevention of postoperative recurrence of Crohn’s disease. J Crohns Colitis 6:637–646

    PubMed  Google Scholar 

  8. Lichtenstein GR, Shahabi A, Seabury SA, Lakdawalla DN, Espinosa OD, Green S, Brauer M, Baldassano RN (2020) Lifetime economic burden of Crohn’s disease and ulcerative colitis by age at diagnosis. Clin Gastroenterol Health 18:889

    Google Scholar 

  9. Taylor KM, Irving PM (2011) Optimization of conventional therapy in patients with IBD. Nat Rev Gastroenterol Hepatol 8:646–656

    CAS  PubMed  Google Scholar 

  10. Adegbola SO, Sahnan K, Warusavitarne J, Hart A, Tozer P (2018) Anti-TNF Therapy in Crohn’s disease. Int J Mol Sci 19

  11. Weaver KN, Gregory M, Syal G, Hoversten P, Hicks SB, Patel D, Christophi G, Beniwal-Patel P, Isaacs KL, Raffals L, Deepak P, Herfarth HH, Barnes EL (2019) Ustekinumab is effective for the treatment of Crohn’s disease of the pouch in a multicenter cohort. Inflamm Bowel Dis 25:767–774

    PubMed  Google Scholar 

  12. Friedrich M, Pohin M, Powrie F (2019) Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity 50:992–1006

    CAS  PubMed  Google Scholar 

  13. Dinarello CA, Simon A, van der Meer JW (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11:633–652

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Danese S, Vermeire S, Hellstern P, Panaccione R, Rogler G, Fraser G, Kohn A, Desreumaux P, Leong RW, Comer GM, Cataldi F, Banerjee A, Maguire MK, Li C, Rath N, Beebe J, Schreiber S (2019) Randomised trial and open-label extension study of an anti-interleukin-6 antibody in Crohn’s disease (ANDANTE I and II). Gut 68:40–48

    CAS  PubMed  Google Scholar 

  15. Jovani M, Fiorino G, Danese S (2013) Anti-IL-13 in inflammatory bowel disease: from the bench to the bedside. Curr Drug Targets 14:1444–1452

    CAS  PubMed  Google Scholar 

  16. Fitzpatrick LR (2013) Inhibition of IL-17 as a pharmacological approach for IBD. Int Rev Immunol 32:544–555

    CAS  PubMed  Google Scholar 

  17. Abraham BP, Quigley EMM (2017) Probiotics in inflammatory bowel disease. Gastroenterol Clin N Am 46:769–782

    Google Scholar 

  18. Becker C, Neurath MF, Wirtz S (2015) The intestinal microbiota in inflammatory bowel disease. ILAR J 56:192–204

    CAS  PubMed  Google Scholar 

  19. Zuo T, Ng SC (2018) The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Front Microbiol 9:2247

    PubMed  PubMed Central  Google Scholar 

  20. Khan I, Ullah N, Zha L, Bai Y, Khan A, Zhao T, Che T, Zhang C (2019) Alteration of gut microbiota in inflammatory bowel disease (IBD): cause or consequence? IBD Treatment Targeting the Gut Microbiome Pathogens 8

  21. Scaldaferri F, Gerardi V, Lopetuso LR, Del Zompo F, Mangiola F, Boskoski I, Bruno G, Petito V, Laterza L, Cammarota G, Gaetani E, Sgambato A, Gasbarrini A (2013) Gut microbial flora, prebiotics, and probiotics in IBD: their current usage and utility. Biomed Res Int.

  22. Zocco MA, dal Verme LZ, Cremonini F, Piscaglia AC, Nista EC, Candelli M, Novi M, Rigante D, Cazzato IA, Ojetti V, Armuzzi A, Gasbarrini G, Gasbarrini A (2006) Efficacy of Lactobacillus GG in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 23:1567–1574

    CAS  PubMed  Google Scholar 

  23. Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M, De Simone C, Sartor RB (2005) VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol 100:1539–1546

    PubMed  Google Scholar 

  24. Guslandi M, Mezzi G, Sorghi M, Testoni PA (2000) Saccharomyces boulardii in maintenance treatment of Crohn's disease. Dig Dis Sci 45:1462–1464

    CAS  PubMed  Google Scholar 

  25. Barra M, Danino T, Garrido D (2020) Engineered probiotics for detection and treatment of inflammatory intestinal diseases. Front Bioeng Biotechnol 8:265

    PubMed  PubMed Central  Google Scholar 

  26. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355

    CAS  PubMed  Google Scholar 

  27. Vandenbroucke K, de Haard H, Beirnaert E, Dreier T, Lauwereys M, Huyck L, Van Huysse J, Demetter P, Steidler L, Remaut E, Cuvelier C, Rottiers P (2010) Orally administered L. lactis secreting an anti-TNF nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol 3:49–56

    CAS  PubMed  Google Scholar 

  28. Vandenbroucke K, Hans W, Van Huysse J, Neirynck S, Demetter P, Remaut E, Rottiers P, Steidler L (2004) Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 127:502–513

    CAS  PubMed  Google Scholar 

  29. Praveschotinunt P, Duraj-Thatte AM, Gelfat I, Bahl F, Chou DB, Joshi NS (2019) Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat Commun 10:5580

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    CAS  Google Scholar 

  31. Chan KM, Liu YT, Ma CH, Jayaram M, Sau S (2013) The 2 micron plasmid of Saccharomyces cerevisiae: a miniaturized selfish genome with optimized functional competence. Plasmid 70:2–17

    CAS  PubMed  Google Scholar 

  32. Jensen NB, Strucko T, Kildegaard KR, David F, Maury J, Mortensen UH, Forster J, Nielsen J, Borodina I (2014) EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res 14:238–248

    CAS  PubMed  Google Scholar 

  33. Stovicek V, Borja GM, Forster J, Borodina I (2015) EasyClone 2.0: expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains. J Ind Microbiol Biotechnol 42:1519–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Carr M, Bensasson D, Bergman CM (2012) Evolutionary genomics of transposable elements in Saccharomyces cerevisiae. PLoS One 7:e50978

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Maury J, Germann SM, Baallal Jacobsen SA, Jensen NB, Kildegaard KR, Herrgard MJ, Schneider K, Koza A, Forster J, Nielsen J, Borodina I (2016) EasyCloneMulti: a set of vectors for simultaneous and multiple genomic integrations in Saccharomyces cerevisiae. PLoS One 11:e0150394

    PubMed  PubMed Central  Google Scholar 

  36. Batista TM, Marques ET, Jr., Franco GR, Douradinha B (2014) Draft genome sequence of the probiotic yeast Saccharomyces cerevisiae var. boulardii Strain ATCC MYA-796. Genome Announc 2.

  37. Hutchins AP, Diez D, Miranda-Saavedra D (2013) The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges. Brief Funct Genomics 12:489–498

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bates JM, Akerlund J, Mittge E, Guillemin K (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2:371–382

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Song W, Wang H, Wu Q (2015) Atrial natriuretic peptide in cardiovascular biology and disease (NPPA). Gene 569:1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kiemer AK, Vollmar AM (2001) The atrial natriuretic peptide regulates the production of inflammatory mediators in macrophages. Ann Rheum Dis 60(Suppl 3):iii68–iii70

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Robinson AS, Hines V, Wittrup KD (1994) Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Biotechnology (N Y) 12:381–384

    CAS  Google Scholar 

  42. Cunningham BC, Lowe DG, Li B, Bennett BD, Wells JA (1994) Production of an atrial natriuretic peptide variant that is specific for type A receptor. EMBO J 13:2508–2515

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Reinecker HC, Steffen M, Witthoeft T, Pflueger I, Schreiber S, MacDermott RP, Raedler A (1993) Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn's disease. Clin Exp Immunol 94:174–181

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L, Karin M (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:103–113

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Partow S, Siewers V, Bjorn S, Nielsen J, Maury J (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27:955–964

    CAS  PubMed  Google Scholar 

  46. Blazeck J, Garg R, Reed B, Alper HS (2012) Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotechnol Bioeng 109:2884–2895

    CAS  PubMed  Google Scholar 

  47. Kjaerulff S, Jensen MR (2005) Comparison of different signal peptides for secretion of heterologous proteins in fission yeast. Biochem Biophys Res Commun 336:974–982

    CAS  PubMed  Google Scholar 

  48. Rakestraw JA, Sazinsky SL, Piatesi A, Antipov E, Wittrup KD (2009) Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol Bioeng 103:1192–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang TT, Sun H, Zhang J, Liu Q, Wang LJ, Chen PP, Wang FK, Li HM, Xiao YH, Zhao XM (2014) The establishment of Saccharomyces boulardii surface display system using a single expression vector. Fungal Genet Biol 64:1–10

    PubMed  Google Scholar 

  50. Tanaka T, Yamada R, Ogino C, Kondo A (2012) Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 95:577–591

    CAS  PubMed  Google Scholar 

  51. Shi Y, Zheng W, Yang K, Harris KG, Ni K, Xue L, Lin W, Chang EB, Weichselbaum RR, Fu YX (2020) Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J Exp Med 217.

  52. Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino T (2019) Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med 25:1057–1063

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Vellaichamy E, Kaur K, Pandey KN (2007) Enhanced activation of pro-inflammatory cytokines in mice lacking natriuretic peptide receptor-A. Peptides 28:893–899

    CAS  PubMed  Google Scholar 

  54. Staedtke V, Bai RY, Kim K, Darvas M, Davila ML, Riggins GJ, Rothman PB, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S (2018) Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature 564:273–277

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ehrenreich H, Sinowatz F, Schulz R, Arendt RM, Goebel FD (1989) Immunoreactive atrial natriuretic peptide (ANP) in endoscopic biopsies of the human gastrointestinal tract. Res Exp Med (Berl) 189:421–425

    CAS  Google Scholar 

  56. Matsushita K, Nishida Y, Hosomi H, Tanaka S (1991) Effects of atrial natriuretic peptide on water and NaCl absorption across the intestine. Am J Phys 260:R6–R12

  57. Lee CH, Ha GW, Kim JH, Kim SH (2016) Modulation in Natriuretic Peptides System in Experimental Colitis in Rats. Dig Dis Sci 61:1060–1068

    CAS  PubMed  Google Scholar 

  58. Moro C, Klimcakova E, Lolmede K, Berlan M, Lafontan M, Stich V, Bouloumie A, Galitzky J, Arner P, Langin D (2007) Atrial natriuretic peptide inhibits the production of adipokines and cytokines linked to inflammation and insulin resistance in human subcutaneous adipose tissue. Diabetologia 50:1038–1047

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Flow Cytometry Core of Institute of Biomedical Sciences for their technical supports. We also thank the Academia Sinica DNA Sequencing Core Facility (AS-CFII-108-115).

Funding

This work was supported by an Academia Sinica Career Development Award (AS-CDA-108-L07) and the Ministry of Science and Technology, Taiwan (107-2113-M-001-013).

Author information

Authors and Affiliations

Authors

Contributions

CHL and KYM conceived and designed the experiments. CHL, JHC, and YCC performed the experiments. CHL and KYM wrote the manuscript. All authors provided clarification, guidance, and revision on the manuscript.

Corresponding author

Correspondence to Kurt Yun Mou.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 3154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CH., Chang, JH., Chang, YC. et al. Treatment of murine colitis by Saccharomyces boulardii secreting atrial natriuretic peptide. J Mol Med 98, 1675–1687 (2020). https://doi.org/10.1007/s00109-020-01987-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01987-8

Keywords

Navigation