Skip to main content
Log in

miR-217–casein kinase-2 cross talk regulates ERK activation in ganglioglioma

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Gangliogliomas (GGs) are the most commonly diagnosed long-term epilepsy-associated tumors (LEATs). Although molecular characterizations of brain tumors have identified few novel biomarkers among the LEATs, mechanisms of pathogenesis remain poorly understood. In this study, global microarray-based microRNA (miRNA) expression profile on a set of 9 GGs indicated 66 miRNAs to be differentially expressed in GG as compared to normal brain. The differences validated by qRT-PCR indicated microRNA-217 to be the most downregulated. Through insilico analysis, ERK1/2 and casein kinase (CK-2α) were predicted to be miR-217 regulated. As decreased miR-217 expression was concomitant with upregulated ERK1/2 and CK-2α levels in GG; the interplay between these molecules was investigated in primary human neural precursor cells to mimic the glioneuronal characteristics of these tumors. miR-217 over-expression-mediated decrease in pERK, CK-2α, and mGluR1 levels was accompanied with increase in glycogen accumulation. Importantly, increase in miR-217 levels upon CK-2α inhibition indicated inverse correlation between the two. Inhibition of CK-2α also decreased ERK and mGluR1 levels. By demonstrating, for the first time, the existence of miR-217–CK-2 cross talk and its effects on known epileptogenic factors, these findings provide a unique insight into the pathogenesis of ganglioglioma. By highlighting the role of CK-2 in affecting miR-217/ERK/mGluR1 interplay, this study suggests that targeting CK-2 may afford a novel strategy aimed at LEATs.

Key messages

  • Global microarray of ganglioglioma indicates downregulation of miR-217.

  • Decreased miR-217 expression is concomitant with elevated CK-2α and Erk levels.

  • Inverse correlation between miR-217 and CK-2α in primary human neural precursors.

  • miR-217 agomir or CK-2α inhibition decreases pERK and mGluR1 levels.

  • CK-2α affects miR-217/ERK/mGluR1 interplay in long-term epilepsy-associated tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blumcke I, Aronica E, Urbach H, Alexopoulos A, Gonzalez-Martinez JA (2014) A neuropathology-based approach to epilepsy surgery in brain tumors and proposal for a new terminology use for long-term epilepsy-associated brain tumors. Acta Neuropathol 128:39–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, Schmieder K, Wesseling P, Mawrin C, Hasselblatt M et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405

    Article  CAS  PubMed  Google Scholar 

  3. Qaddoumi I, Orisme W, Wen J, Santiago T, Gupta K, Dalton JD, Tang B, Haupfear K, Punchihewa C, Easton J et al (2016) Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol 131:833–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fassunke J, Majores M, Tresch A, Niehusmann P, Grote A, Schoch S, Becker AJ (2008) Array analysis of epilepsy-associated gangliogliomas reveals expression patterns related to aberrant development of neuronal precursors. Brain 131:3034–3050

    Article  PubMed  Google Scholar 

  5. Moshé SL, Perucca E, Ryvlin P, Tomson T (2015) Epilepsy: new advances. Lancet 385:884–898

    Article  PubMed  Google Scholar 

  6. Jimenez-Mateos EM, Henshall DC (2013) Epilepsy and microRNA. Neuroscience 238:218–229

    Article  CAS  PubMed  Google Scholar 

  7. Mooney C, Becker BA, Raoof R, Henshall DC (2016) EpimiRBase: a comprehensive database of microRNA-epilepsy associations. Bioinformatics 32:1436–1438

    Article  CAS  PubMed  Google Scholar 

  8. Prabowo AS, van Scheppingen J, Iyer AM, Anink JJ, Spliet WGM, van Rijen PC, Schouten-van Meeteren AY, Aronica E (2015) Differential expression and clinical significance of three inflammation-related microRNAs in gangliogliomas. J Neuroinflamm 12(1):97. https://doi.org/10.1186/s12974-015-0315-7

  9. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290

    Article  CAS  PubMed  Google Scholar 

  10. Moss TJ, Luo Z, Seviour EG, Sehgal V, Lu Y, Hill SM, Rupaimoole R, Lee J-S, Rodriguez-Aguayo C, Lopez-Berestein G et al (2015) Genome-wide perturbations by miRNAs map onto functional cellular pathways, identifying regulators of chromatin modifiers. NPJ Syst Biol Appl 1:15001

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li Y, Li Y, Ge P, Ma C (2017) MiR-126 regulates the ERK pathway via targeting KRAS to inhibit the glioma cell proliferation and invasion. Mol Neurobiol 54:137–145

    Article  CAS  PubMed  Google Scholar 

  12. Møller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen M, Duroux M (2013) A systematic review of microRNA in glioblastoma multiforme: micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol 47:131–144

    Article  PubMed  Google Scholar 

  13. Visani M, de Biase D, Marucci G, Cerasoli S, Nigrisoli E, Bacchi Reggiani ML, Albani F, Baruzzi A, Pession A (2014) Expression of 19 microRNAs in glioblastoma and comparison with other brain neoplasia of grades I–III. Mol Oncol 8:417–430

    Article  CAS  PubMed  Google Scholar 

  14. Ho C-Y, Bar E, Giannini C, Marchionni L, Karajannis MA, Zagzag D, Gutmann DH, Eberhart CG, Rodriguez FJ (2012) MicroRNA profiling in pediatric pilocytic astrocytoma reveals biologically relevant targets, including PBX3, NFIB, and METAP2. Neuro Oncol: nos269 15(1):69-82. https://doi.org/10.1093/neuonc/nos269

  15. Louis DN, Perry A, Reifenberger G, Av D, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  16. Kakkar A, Majumdar A, Kumar A, Tripathi M, Pathak P, Sharma MC, Suri V, Tandon V, Chandra SP, Sarkar C (2016) Alterations in BRAF gene, and enhanced mTOR and MAPK signaling in dysembryoplastic neuroepithelial tumors (DNTs). Epilepsy Res 127:141–151

    Article  CAS  PubMed  Google Scholar 

  17. Jha P, Agrawal R, Pathak P, Kumar A, Purkait S, Mallik S, Suri V, Chand Sharma M, Gupta D, Suri A et al (2015) Genome-wide small noncoding RNA profiling of pediatric high-grade gliomas reveals deregulation of several miRNAs, identifies downregulation of snoRNA cluster HBII-52 and delineates H3F3A and TP53 mutant-specific miRNAs and snoRNAs. Int J Cancer 137:2343–2353

    Article  CAS  PubMed  Google Scholar 

  18. Lu T-P, Lee C-Y, Tsai M-H, Chiu Y-C, Hsiao CK, Lai L-C, Chuang EY (2012) miRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS ONE 7:e42390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Villa A, Navarro-Galve B, Bueno C, Franco S, Blasco MA, Martinez-Serrano A (2004) Long-term molecular and cellular stability of human neural stem cell lines. Exp Cell Res 294:559–570

    Article  CAS  PubMed  Google Scholar 

  20. Fatima M, Kumari R, Schwamborn JC, Mahadevan A, Shankar SK, Raja R, Seth P (2016) Tripartite containing motif 32 modulates proliferation of human neural precursor cells in HIV-1 neurodegeneration. Cell Death Differ 23:776–786

    Article  CAS  PubMed  Google Scholar 

  21. Ahmad F, Dixit D, Sharma V, Kumar A, Joshi SD, Sarkar C, Sen E (2016) Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma. Cell Death Dis 7:e2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dixit D, Sharma V, Ghosh S, Mehta VS, Sen E (2012) Inhibition of casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFα)-induced apoptosis through SIRT1 inhibition. Cell Death Dis 3:e271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Project tSJCsRH-WUPCG (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45:602–612

    Article  Google Scholar 

  24. Brehme H, Kirschstein T, Schulz R, Köhling R (2014) In vivo treatment with the casein kinase 2 inhibitor 4,5,6,7-tetrabromotriazole augments the slow afterhyperpolarizing potential and prevents acute epileptiform activity. Epilepsia 55:175–183

    Article  CAS  PubMed  Google Scholar 

  25. Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11:R90

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu F, Zhong P, Liu X, Sun D, Gao H-Q, Liu Q-S (2013) Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis. Neuropsychopharmacology 38:1308–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Plotnikov A, Chuderland D, Karamansha Y, Livnah O, Seger R (2011) Nuclear extracellular signal-regulated kinase 1 and 2 translocation is mediated by casein kinase 2 and accelerated by autophosphorylation. Mol Cell Biol 31:3515–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao W, Chuang S-C, Young SR, Bianchi R, Wong RKS (2015) Extracellular glutamate exposure facilitates group I mGluR-mediated epileptogenesis in the hippocampus. J Neurosci 35:308–315

    Article  PubMed  PubMed Central  Google Scholar 

  29. DiNuzzo M, Mangia S, Maraviglia B, Giove F (2015) Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy? Metab Brain Dis 30:307–316

    Article  CAS  PubMed  Google Scholar 

  30. Montori-Grau M, Tarrats N, Osorio-Conles O, Orozco A, Serrano-Marco L, Vázquez-Carrera M, Gómez-Foix AM (2013) Glucose dependence of glycogen synthase activity regulation by GSK3 and MEK/ERK inhibitors and angiotensin-(1-7) action on these pathways in cultured human myotubes. Cell Signal 25:1318–1327

    Article  CAS  PubMed  Google Scholar 

  31. Sickmann HM, Waagepetersen HS, Schousboe A, Benie AJ, Bouman SD (2012) Brain glycogen and its role in supporting glutamate and GABA homeostasis in a type 2 diabetes rat model. Neurochem Int 60:267–275

    Article  CAS  PubMed  Google Scholar 

  32. Blümcke I, Wiestler OD (2002) Gangliogliomas: an intriguing tumor entity associated with focal epilepsies. J Neuropathol Exp Neurol 61:575–584

    Article  PubMed  Google Scholar 

  33. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  34. Giulioni M, Marucci G, Martinoni M, Marliani AF, Toni F, Bartiromo F, Volpi L, Riguzzi P, Bisulli F, Naldi I et al (2014) Epilepsy associated tumors: review article. World J Clin Cases 2:623–641

    Article  PubMed  PubMed Central  Google Scholar 

  35. Maschio M (2012) Brain tumor-related epilepsy. Curr Neuropharmacol 10:124–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Loiacono G, Cirillo C, Chiarelli F, Verrotti A (2011) Focal epilepsy associated with glioneuronal tumors. ISRN Neurol 2011. https://doi.org/10.5402/2011/867503

  37. Prabowo AS, Thuijl HF, Scheinin I, Sie D, Essen HF, Iyer AM, Spliet WGM, Ferrier CH, Rijen PC, Veersema TJ (2015) Landscape of chromosomal copy number aberrations in gangliogliomas and dysembryoplastic neuroepithelial tumours. Neuropathol Appl Neurobiol 41:743–755

    Article  CAS  PubMed  Google Scholar 

  38. Lin A, Rodriguez FJ, Karajannis MA, Williams SC, Legault G, Zagzag D, Burger PC, Allen JC, Eberhart CG, Bar EE (2012) BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549:BRAF fusion variants. J Neuropathol Exp Neurol 71:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reschke CR, Henshall DC (2015) microRNA and epilepsy. Adv Exp Med Biol 888:41–70

    Article  PubMed  Google Scholar 

  40. Ames HM, Yuan M, Vizcaíno MA, Yu W, Rodriguez FJ (2017) MicroRNA profiling of low-grade glial and glioneuronal tumors shows an independent role for cluster 14q32.31 member miR-487b. Modern pathology. An official journal of the United States and Canadian Academy of Pathology, Inc, 30(2):204. https://doi.org/10.1038/modpathol.2016.177

  41. Yan ZX, Wu LL, Xue K, Zhang QL, Guo Y, Romero M, Leboeuf C, Janin A, Chen SJ, Wang L et al (2014) MicroRNA187 overexpression is related to tumor progression and determines sensitivity to bortezomib in peripheral T-cell lymphoma. Leukemia 28:880–887

    Article  CAS  PubMed  Google Scholar 

  42. Wang R-T, Xu M, Xu C-X, Song Z-G, Jin H (2014) Decreased expression of miR216a contributes to non-small-cell lung cancer progression. Clin Cancer Res 20:4705–4716

    Article  CAS  PubMed  Google Scholar 

  43. Zhu Y, Zhao H, Feng L, Xu S (2016) MicroRNA-217 inhibits cell proliferation and invasion by targeting Runx2 in human glioma. Am J Transl Res 8:1482–1491

    PubMed  PubMed Central  Google Scholar 

  44. Li J, Li D, Zhang W (2016) Tumor suppressor role of miR-217 in human epithelial ovarian cancer by targeting IGF1R. Oncol Rep 35:1671–1679

    Article  CAS  PubMed  Google Scholar 

  45. Kim EK, Choi E-J (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta (BBA)—Molecular Basis of Disease 1802:396–405

    Article  CAS  Google Scholar 

  46. Truong AY, Nicolaides TP (2015) Targeted Therapy for MAPK Alterations in Pediatric Gliomas. Brain Disord Ther Suppl 2. https://doi.org/10.4172/2168-975X.S2-005

  47. Li Y, Peng Z, Xiao B, Houser CR (2010) Activation of ERK by spontaneous seizures in neural progenitors of the dentate gyrus in a mouse model of epilepsy. Exp Neurol 224:133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou B, Ritt DA, Morrison DK, Der CJ, Cox AD (2016) Protein kinase CK2α maintains extracellular signal-regulated kinase (ERK) activity in a CK2α kinase-independent manner to promote resistance to inhibitors of RAF and MEK but not ERK in BRAF mutant melanoma. J Biol Chem 291:17804–17815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang JH, Mao L-M, Choe ES, Wang JQ (2016) Synaptic ERK2 phosphorylates and regulates metabotropic glutamate receptor 1 in vitro and in neurons. Mol Neurobiol:1–15. https://doi.org/10.1007/s12035-016-0225-4

  50. Zhao W, Bianchi R, Wang M, Wong RKS (2004) Extracellular signal-regulated kinase 1/2 is required for the induction of group I metabotropic glutamate receptor-mediated epileptiform discharges. J Neurosci 24:76–84

    Article  CAS  PubMed  Google Scholar 

  51. Obel LF, Müller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A (2012) Brain glycogen—new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenerg 4. https://doi.org/10.3389/fnene.2012.00003

  52. Zois CE, Harris AL (2016) Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J Mol Med (Berl) 94:137–154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by a research grant from the Department of Biotechnology (DBT, Government of India #BT/Med/30/SP11016/2015) to ES, and intramural fund (A.I.I.M.S) to VT and CS. FA is supported by a research fellowship from DBT, Government of India. The technical assistance of Rajesh Kumar Kumawat is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chitra Sarkar or Ellora Sen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Atreye Majumdar and Fahim Ahmad are equal contributors.

Electronic supplementary material

ESM 1

(PDF 1309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, A., Ahmad, F., Sheikh, T. et al. miR-217–casein kinase-2 cross talk regulates ERK activation in ganglioglioma. J Mol Med 95, 1215–1226 (2017). https://doi.org/10.1007/s00109-017-1571-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1571-z

Keywords

Navigation