Skip to main content
Log in

Downregulation of miR-221-3p contributes to IL-1β-induced cartilage degradation by directly targeting the SDF1/CXCR4 signaling pathway

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is characterized by degradation of chondrocyte extracellular matrix (ECM). Accumulating evidence suggests that microRNAs (miRNAs) are associated with OA, but little is known of their function in chondrocyte ECM degradation. The objective of this study was to investigate the expression and function of miRNAs in OA. miRNA expression profile was determined in OA cartilage tissues and controls, employing Solexa sequencing and reverse transcription quantitative PCR (RT-qPCR). According to a modified Mankin scale, cartilage degradation was evaluated. Functional analysis of the miRNAs on chondrocyte ECM degradation was performed after miRNA transfection and IL-1β treatment. Luciferase reporter assays and western blotting were employed to determine miRNA targets. Expression of miR-221-3p was downregulated in OA cartilage tissues, which was significantly correlated with a modified Mankin scale. Through gain-of-function and loss-of-function studies, miR-221-3p was shown to significantly affect matrix synthesis gene expression and chondrocyte proliferation and apoptosis. Using SW1353 and C28I2 cells, SDF1 was identified as a target of miR-221-3p. SDF1 overexpression resulted in increased expression of catabolic genes such as MMP-13 and ADAMTS-5 in response to IL-1β, but these effects were moderated by miR-221-3p. SDF1 treatment antagonized this effect, while knockdown of SDF1 by shSDF1 induced inhibitory effects on the expression of CXCR4 and its main target genes, similar to miR-221-3p. The results indicate that upregulation of miR-221-3p could prevent IL-1β-induced ECM degradation in chondrocytes. Targeting the SDF1/CXCR4 signaling pathway may be used as a therapeutic approach for OA. miR-221-3p is downregulated in human cartilage tissues. miR-221-3p levels are associated with cartilage degeneration grade. miR-221-3p upregulation prevents IL-1β-induced ECM degradation in chondrocytes. Protection of ECM degradation by miR-223-3p occurs via SDF1/CXCR4 signaling. miR-221-3p is identified as a novel potential therapeutic target for osteoarthritis.

Key messages

  • miR-221-3p is downregulated in human cartilage tissues.

  • miR-221-3p levels are associated with cartilage degeneration grade.

  • miR-221-3p upregulation prevents IL-1β-induced ECM degradation in chondrocytes.

  • Protection of ECM degradation by miR-223-3p occurs via SDF1/CXCR4 signaling.

  • miR-221-3p is identified as a novel potential therapeutic target for osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hunter DJ, Zhang YQ, Niu JB, Tu X, Amin S, Clancy M, Guermazi A, Grigorian M, Gale D, Felson DT (2006) The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum 54:795–801

    Article  CAS  PubMed  Google Scholar 

  2. Hunter DJ (2011) Pharmacologic therapy for osteoarthritis—the era of disease modification. Nat Rev Rheumatol 7:13–22

    Article  CAS  PubMed  Google Scholar 

  3. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ji Q, Xu X, Zhang Q, Kang L, Xu Y, Zhang K, Li L, Liang Y, Hong T, Ye Q et al (2016) The IL-1β/AP-1/miR-30a/ADAMTS-5 axis regulates cartilage matrix degradation in human osteoarthritis. J Mol Med (Berl) 94:771–785

    Article  CAS  Google Scholar 

  5. Barter MJ, Bui C, Young DA (2012) Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. Osteoarthr Cartil 20:339–349

    Article  CAS  PubMed  Google Scholar 

  6. Rushton MD, Reynard LN, Barter MJ, Refaie R, Rankin KS, Young DA, Loughlin J (2014) Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheumatol 66:2450–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagase H, Kashiwagi M (2003) Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 5:94–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goldring MB (2000) The role of the chondrocyte in osteoarthritis. Arthritis Rheum 43:1916–1926

    Article  CAS  PubMed  Google Scholar 

  9. Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, Sokolove J (2016) Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:580–592

    Article  CAS  PubMed  Google Scholar 

  10. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7:33–42

    Article  CAS  PubMed  Google Scholar 

  11. Engels BM, Hutvagner G (2006) Principles and effects of microRNA-mediated posttranscriptional gene regulation. Oncogene 25:6163–6169

    Article  CAS  PubMed  Google Scholar 

  12. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  13. Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319:1785–1786

    Article  CAS  PubMed  Google Scholar 

  14. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  15. Beyer C, Zampetaki A, Lin NY, Kleyer A, Perricone C, Iagnocco A, Distler A, Langley SR, Gelse K, Sesselmann S et al (2015) Signature of circulating microRNAs in osteoarthritis. Ann Rheum Dis 74:e18

    Article  PubMed  Google Scholar 

  16. Le LT, Swingler TE, Crowe N, Vincent TL, Barter MJ, Donell ST, Delany AM, Dalmay T, Young DA, Clark IM (2016) The microRNA-29 family in cartilage homeostasis and osteoarthritis. J Mol Med (Berl) 94:583–596

    Article  CAS  Google Scholar 

  17. Park SJ, Cheon EJ, Lee MH, Kim HA (2013) MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1β-induced catabolic effects in human chondrocytes. Arthritis Rheum 65:3141–3152

    Article  CAS  PubMed  Google Scholar 

  18. Makki MS, Haseeb A, Haqqi TM (2015) MicroRNA-9 promotion of interleukin-6 expression by inhibiting monocyte chemoattractant protein-induced protein 1 expression in interleukin-1β-stimulated human chondrocytes. Arthritis Rheumatol 67:2117–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akhtar N, Rasheed Z, Ramamurthy S, Anbazhagan AN, Voss FR, Haqqi TM (2010) MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum 62:1361–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Akhtar N, Haqqi TM (2012) MicroRNA-199a* regulates the expression of cyclooxygenase-2 in human chondrocytes. Ann Rheum Dis 71:1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Altman R, Alarcon G, Appelrouth D, Bloch D, Borenstein D, Brandt K, Brown C, Cooke TD, Daniel W, Feldman D et al (1991) The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum 34:505–514

    Article  CAS  PubMed  Google Scholar 

  22. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, Christy W, Cooke TD, Greenwald R, Hochberg M et al (1986) Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis Rheum 29:1039–1049

    Article  CAS  PubMed  Google Scholar 

  23. Yamasaki K, Nakasa T, Miyaki S, Ishikawa M, Deie M, Adachi N, Yasunaga Y, Asahara H, Ochi M (2009) Expression of microRNA-146a in osteoarthritis cartilage. Arthritis Rheum 60:1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stagakis E, Bertsias G, Verginis P, Nakou M, Hatziapostolou M, Kritikos H, Iliopoulos D, Boumpas DT (2011) Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis 70:1496–1506

    Article  CAS  PubMed  Google Scholar 

  25. Hofsli E, Sjursen W, Prestvik WS, Johansen J, Rye M, Tranø G, Wasmuth HH, Hatlevoll I, Thommesen L (2013) Identification of serum microRNA profiles in colon cancer. Br J Cancer 108:1712–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jo DY, Rafii S, Hamada T, Moore MA (2000) Chemotaxis of primitive hematopoietic cells in response to stromal cell-derived factor-1. J Clin Invest 105:101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 213:442–456

    Article  CAS  PubMed  Google Scholar 

  28. Wei F, Moore DC, Wei L, Li Y, Zhang G, Wei X, Lee JK, Chen Q (2012) Attenuation of osteoarthritis via blockade of the SDF-1/CXCR4 signaling pathway. Arthritis Res Ther 14:R177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanbe K, Takagishi K, Chen Q (2002) Stimulation of matrix metalloprotease 3 release from human chondrocytes by the interaction of stromal cellderived factor 1 and CXC chemokine receptor 4. Arthritis Rheum 46:130–137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the donors enrolled in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-jin Guo.

Ethics declarations

Informed consent from each patient was obtained, and this work was approved by the ethics committee of our institution.

Conflict of interest

The authors declare no conflict of interest related to this study.

Funding

This work has received support from the National Natural Science Foundation of China (81672184), the Key Program of Science and Technique Development Foundation in Jiangsu Province (BE2015627, BE2016642), the Research project of Jiangsu Provincial Health Department (H201528), the China Postdoctoral Science Foundation funded project (2016M591929), and the Social Development Project of Xuzhou Municipal Science and Technology Bureau (KC15SH067).

Additional information

Xin Zheng and Feng-chao Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Zhao, Fc., Pang, Y. et al. Downregulation of miR-221-3p contributes to IL-1β-induced cartilage degradation by directly targeting the SDF1/CXCR4 signaling pathway. J Mol Med 95, 615–627 (2017). https://doi.org/10.1007/s00109-017-1516-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1516-6

Keywords

Navigation