Skip to main content
Log in

Autophagy core machinery: overcoming spatial barriers in neurons

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Autophagy is a major degradation pathway that engulfs, removes, and recycles unwanted cytoplasmic material including damaged organelles and toxic protein aggregates. One type of autophagy, macroautophagy, is a tightly regulated process facilitated by autophagy-related (Atg) proteins that must communicate effectively and act in concert to enable the de novo formation of the phagophore, its maturation into an autophagosome, and its subsequent targeting and fusion with the lysosome or the vacuole. Autophagy plays a significant role in physiology, and its dysregulation has been linked to several diseases, which include certain cancers, cardiomyopathies, and neurodegenerative diseases. Here, we summarize the key processes and the proteins that make up the macroautophagy machinery. We also briefly highlight recently uncovered molecular mechanisms specific to neurons allowing them to uniquely regulate this catabolic process to accommodate their complicated architecture and non-dividing state. Overall, these distinct mechanisms establish a conceptual framework addressing how macroautophagic dysfunction could result in maladies of the nervous system, providing possible therapeutic avenues to explore with a goal of preventing or curing such diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Frake RA, Ricketts T, Menzies FM, Rubinsztein DC (2015) Autophagy and neurodegeneration. J Clin Invest 125:65–74

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hu Z, Yang B, Mo X, Xiao H (2015) Mechanism and regulation of autophagy and its role in neuronal diseases. Mol Neurobiol 52:1190–1209

    Article  CAS  PubMed  Google Scholar 

  3. Kiriyama Y, Nochi H (2015) The function of autophagy in neurodegenerative diseases. Int J Mol Sci 16:26797–26812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cortes CJ, La Spada AR (2015) Autophagy in polyglutamine disease: imposing order on disorder or contributing to the chaos? Mol Cell Neurosci 66:53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tyson T, Steiner JA, Brundin P (2015) Sorting out release, uptake and processing of alpha-synuclein during prion-like spread of pathology. J Neurochem. doi:10.1111/jnc.13449

    Google Scholar 

  6. Lynch-Day MA, Mao K, Wang K, et al. (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009357

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nikoletopoulou V, Papandreou M-E, Tavernarakis N (2015) Autophagy in the physiology and pathology of the central nervous system. Cell Death Differ 22:398–407

    Article  CAS  PubMed  Google Scholar 

  8. Klionsky DJ, Abdelmohsen K, Abe A, et al. (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222

    Article  PubMed  Google Scholar 

  9. Shen D-N, Zhang L-H, Wei E-Q, Yang Y (2015) Autophagy in synaptic development, function, and pathology. Neurosci Bull 31:416–426

    Article  CAS  PubMed  Google Scholar 

  10. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gatica D, Chiong M, Lavandero S, Klionsky DJ (2015) Molecular mechanisms of autophagy in the cardiovascular system. Circ Res 116:456–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li W-W, Li J, Bao J-K (2012) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69:1125–1136

    Article  CAS  PubMed  Google Scholar 

  13. Xilouri M, Stefanis L (2015) Chaperone mediated autophagy to the rescue: a new-fangled target for the treatment of neurodegenerative diseases. Mol Cell Neurosci 66:29–36

    Article  CAS  PubMed  Google Scholar 

  14. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41

    Article  CAS  PubMed  Google Scholar 

  15. Reggiori F, Klionsky DJ (2013) Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 194:341–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noda NN, Ohsumi Y, Inagaki F (2009) ATG systems from the protein structural point of view. Chem Rev 109:1587–1598

    Article  CAS  PubMed  Google Scholar 

  17. Popelka H, Klionsky DJ (2015) One step closer to understanding mammalian macroautophagy initiation: interplay of 2 HORMA architectures in the ULK1 complex. Autophagy 11:1953–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kamada Y, Yoshino K-I, Kondo C, et al. (2010) Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 30:1049–1058

    Article  CAS  PubMed  Google Scholar 

  19. Kabeya Y, Kamada Y, Baba M, et al. (2005) Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 16:2544–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kabeya Y, Noda NN, Fujioka Y, et al. (2009) Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem Biophys Res Commun 389:612–615

    Article  CAS  PubMed  Google Scholar 

  21. Cheong H, Nair U, Geng J, Klionsky DJ (2008) The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell 19:668–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kamada Y, Funakoshi T, Shintani T, et al. (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yeh Y-Y, Wrasman K, Herman PK (2010) Autophosphorylation within the Atg1 activation loop is required for both kinase activity and the induction of autophagy in Saccharomyces cerevisiae. Genetics 185:871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yan J, Kuroyanagi H, Kuroiwa A, et al. (1998) Identification of mouse ULK1, a novel protein kinase structurally related to C. elegans UNC-51. Biochem Biophys Res Commun 246:222–227

    Article  CAS  PubMed  Google Scholar 

  25. Yan J, Kuroyanagi H, Tomemori T, et al. (1999) Mouse ULK2, a novel member of the UNC-51-like protein kinases: unique features of functional domains. Oncogene 18:5850–5859

    Article  CAS  PubMed  Google Scholar 

  26. Hosokawa N, Sasaki T, Iemura S-I, et al. (2009) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5:973–979

    Article  CAS  PubMed  Google Scholar 

  27. Mercer CA, Kaliappan A, Dennis PB (2009) A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5:649–662

    Article  CAS  PubMed  Google Scholar 

  28. Hara T, Takamura A, Kishi C, et al. (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181:497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hosokawa N, Hara T, Kaizuka T, et al. (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jung CH, Jun CB, Ro S-H, et al. (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petiot A, Ogier-Denis E, Blommaart EF, et al. (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998

    Article  CAS  PubMed  Google Scholar 

  32. Furuya N, Yu J, Byfield M, et al. (2005) The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1:46–52

    Article  CAS  PubMed  Google Scholar 

  33. Kametaka S, Okano T, Ohsumi M, Ohsumi Y (1998) Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem 273:22284–22291

    Article  CAS  PubMed  Google Scholar 

  34. Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Axe EL, Walker SA, Manifava M, et al. (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Polson HEJ, de Lartigue J, Rigden DJ, et al. (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6:506–522

    Article  CAS  PubMed  Google Scholar 

  37. Pattingre S, Tassa A, Qu X, et al. (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  CAS  PubMed  Google Scholar 

  38. Wei Y, Pattingre S, Sinha S, et al. (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360–5372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131

    Article  CAS  PubMed  Google Scholar 

  41. He C, Levine B (2010) The Beclin 1 interactome. Curr Opin Cell Biol 22:140–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Salminen A, Kaarniranta K, Kauppinen A (2013) Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res Rev 12:520–534

    Article  CAS  PubMed  Google Scholar 

  43. Matsunaga K, Saitoh T, Tabata K, et al. (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11:385–U69

    Article  CAS  PubMed  Google Scholar 

  44. Zhong Y, Wang QJ, Li X, et al. (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11:468–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fimia GM, Stoykova A, Romagnoli A, et al. (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1U14

    CAS  PubMed  Google Scholar 

  46. Di Bartolomeo S, Corazzari M, Nazio F, et al. (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takahashi Y, Coppola D, Matsushita N, et al. (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9:1142–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tanida I, Mizushima N, Kiyooka M, et al. (1999) Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol Biol Cell 10:1367–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim J, Dalton VM, Eggerton KP, et al. (1999) Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell 10:1337–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ichimura Y, Kirisako T, Takao T, et al. (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492

    Article  CAS  PubMed  Google Scholar 

  51. Shintani T, Mizushima N, Ogawa Y, et al. (1999) Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 18:5234–5241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuma A, Mizushima N, Ishihara N, Ohsumi Y (2002) Formation of the approximately 350-kDa Apg12-Apg5·Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 277:18619–18625

    Article  CAS  PubMed  Google Scholar 

  53. Kim J, Huang W-P, Klionsky DJ (2001) Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol 152:51–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kabeya Y, Mizushima N, Ueno T, et al. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kabeya Y, Mizushima N, Yamamoto A, et al. (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812

    Article  CAS  PubMed  Google Scholar 

  56. Weidberg H, Shvets E, Shpilka T, et al. (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29:1792–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jin M, Klionsky DJ (2014) Regulation of autophagy: modulation of the size and number of autophagosomes. FEBS Lett 588:2457–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xie Z, Nair U, Klionsky DJ (2008) Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19:3290–3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mari M, Griffith J, Rieter E, et al. (2010) An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190:1005–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reggiori F, Shintani T, Nair U, Klionsky DJ (2005) Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 1:101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. He C, Baba M, Cao Y, Klionsky DJ (2008) Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol Biol Cell 19:5506–5516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Backues SK, Orban DP, Bernard A, et al (2014) Atg23 and Atg27 Act at the early stages of Atg9 trafficking in S. cerevisiae. Traffic. doi:10.1111/tra.12240

  63. Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ (2004) The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6:79–90

    Article  CAS  PubMed  Google Scholar 

  64. Yen W-L, Legakis JE, Nair U, Klionsky DJ (2007) Atg27 is required for autophagy-dependent cycling of Atg9. Mol Biol Cell 18:581–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Legakis JE, Yen W-L, Klionsky DJ (2007) A cycling protein complex required for selective autophagy. Autophagy 3:422–432

    Article  CAS  PubMed  Google Scholar 

  66. Young ARJ, Chan EYW, Hu XW, et al. (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119:3888–3900

    Article  CAS  PubMed  Google Scholar 

  67. Webber JL, Young ARJ, Tooze SA (2007) Atg9 trafficking in mammalian cells. Autophagy 3:54–56

    Article  CAS  PubMed  Google Scholar 

  68. Chen Y, Klionsky DJ (2011) The regulation of autophagy—unanswered questions. J Cell Sci 124:161–170

    Article  CAS  PubMed  Google Scholar 

  69. Darsow T, Rieder SE, Emr SD (1997) A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 138:517–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Abeliovich H, Darsow T, Emr SD (1999) Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p. EMBO J 18:6005–6016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sato TK, Darsow T, Emr SD (1998) Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. Mol Cell Biol 18:5308–5319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu X, Mao K, Yu AYH, et al. (2016) The Atg17-Atg31-Atg29 complex coordinates with Atg11 to recruit the Vam7 SNARE and mediate autophagosome-vacuole fusion. Curr Biol 26:150–160

    Article  CAS  PubMed  Google Scholar 

  73. Wang C-W, Stromhaug PE, Kauffman EJ, et al. (2003) Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J Cell Biol 163:973–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jiang P, Nishimura T, Sakamaki Y, et al. (2014) The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell 25:1327–1337

    Article  PubMed  PubMed Central  Google Scholar 

  75. Komatsu M, Waguri S, Chiba T, et al. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  76. Yu WH, Kumar A, Peterhoff C, et al. (2004) Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer’s disease. Int J Biochem Cell Biol 36:2531–2540

    Article  CAS  PubMed  Google Scholar 

  77. Maday S, Holzbaur ELF (2016) Compartment-specific regulation of autophagy in primary neurons. J Neurosci 36:5933–5945

    Article  CAS  PubMed  Google Scholar 

  78. Yapici Z, Eraksoy M (2005) Non-progressive congenital ataxia with cerebellar hypoplasia in three families. Acta Paediatr 94:248–253

    Article  CAS  PubMed  Google Scholar 

  79. Kim M, Sandford E, Gatica D, et al. (2016) Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. eLife. doi:10.7554/eLife.12245

    Google Scholar 

  80. Fu M-M, Holzbaur ELF (2013) JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J Cell Biol 202:495–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fu M-M, Holzbaur ELF (2014) MAPK8IP1/JIP1 regulates the trafficking of autophagosomes in neurons. Autophagy 10:2079–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maday S, Wallace KE, Holzbaur ELF (2012) Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 196:407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206:655–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Davis C-HO, Kim K-Y, Bushong EA, et al. (2014) Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci U S A 111:9633–9638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hollenbeck PJ (1993) Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport. J Cell Biol 121:305–315

    Article  CAS  PubMed  Google Scholar 

  86. Lee S, Sato Y, Nixon RA (2011) Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy. J Neurosci 31:7817–7830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim E, Jung H (2015) Local protein synthesis in neuronal axons: why and how we study. BMB Rep 48:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stavoe AKH, Hill SE, Hall DH, Colón-Ramos DA (2016) KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses. Dev Cell 38:171–185

    Article  CAS  PubMed  Google Scholar 

  89. Devireddy S, Liu A, Lampe T, Hollenbeck PJ (2015) The organization of mitochondrial quality control and life cycle in the nervous system in vivo in the absence of PINK1. J Neurosci 35:9391–9401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sung H, Tandarich LC, Nguyen K, Hollenbeck PJ (2016) Compartmentalized regulation of Parkin-mediated mitochondrial quality control in the Drosophila nervous system in vivo. J Neurosci 36:7375–7391

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant GM053396 to D.J.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Klionsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariosa, A.R., Klionsky, D.J. Autophagy core machinery: overcoming spatial barriers in neurons. J Mol Med 94, 1217–1227 (2016). https://doi.org/10.1007/s00109-016-1461-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1461-9

Keywords

Navigation