Skip to main content

Advertisement

Log in

Functional and in silico assessment of MAX variants of unknown significance

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The presence of germline mutations affecting the MYC-associated protein X (MAX) gene has recently been identified as one of the now 11 major genetic predisposition factors for the development of hereditary pheochromocytoma and/or paraganglioma. Little is known regarding how missense variants of unknown significance (VUS) in MAX affect its pivotal role in the regulation of the MYC/MAX/MXD axis. In the present study, we propose a consensus computational prediction based on five “state-of-the-art” algorithms. We also describe a PC12-based functional assay to assess the effects that 12 MAX VUS may have on MYC’s E-box transcriptional activation. For all but two of these 12 VUS, the functional assay and the consensus computational prediction gave consistent results; we classified seven variants as pathogenic and three as nonpathogenic. The introduction of wild-type MAX cDNA into PC12 cells significantly decreased MYC’s ability to bind to canonical E-boxes, while pathogenic MAX proteins were not able to fully repress MYC activity. Further clinical and molecular evaluation of variant carriers corroborated the results obtained with our functional assessment. In the absence of clear heritability, clinical information, and molecular data, consensus computational predictions and functional models are able to correctly classify VUS affecting MAX.

Key messages

  • A functional assay assesses the effects of MAX VUS over MYC transcriptional activity.

  • A consensus computational prediction and the functional assay show high concordance.

  • Variant carriers’ clinical and molecular data support the functional assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mannelli M, Castellano M, Schiavi F, Filetti S, Giacche M, Mori L, Pignataro V, Bernini G, Giache V, Bacca A et al (2009) Clinically guided genetic screening in a large cohort of Italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J Clin Endocrinol Metab 94:1541–1547

    Article  CAS  PubMed  Google Scholar 

  2. Cascon A, Pita G, Burnichon N, Landa I, Lopez-Jimenez E, Montero-Conde C, Leskela S, Leandro-Garcia LJ, Leton R, Rodriguez-Antona C et al (2009) Genetics of pheochromocytoma and paraganglioma in Spanish patients. J Clin Endocrinol Metab 94:1701–1705

    Article  CAS  PubMed  Google Scholar 

  3. Welander J, Soderkvist P, Gimm O (2011) Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer 18:R253–R276

    Article  CAS  PubMed  Google Scholar 

  4. Burnichon N, Buffet A, Parfait B, Letouze E, Laurendeau I, Loriot C, Pasmant E, Abermil N, Valeyrie-Allanore L, Bertherat J et al (2012) Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Hum Mol Genet. doi:10.1093/hmg/dds374

    PubMed  Google Scholar 

  5. Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, Skoldberg F, Husebye ES, Eng C, Maher ER (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69:49–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Burnichon N, Briere JJ, Libe R, Vescovo L, Riviere J, Tissier F, Jouanno E, Jeunemaitre X, Benit P, Tzagoloff A et al (2010) SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 19:3011–3020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der Mey A, Taschner PE, Rubinstein WS, Myers EN et al (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851

    Article  CAS  PubMed  Google Scholar 

  8. Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260:1317–1320

    Article  CAS  PubMed  Google Scholar 

  9. Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, Love DR, Mole SE, Moore JK, Papi L et al (1993) Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363:458–460

    Article  CAS  PubMed  Google Scholar 

  10. Qin Y, Yao L, King EE, Buddavarapu K, Lenci RE, Chocron ES, Lechleiter JD, Sass M, Aronin N, Schiavi F et al (2010) Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet 42:229–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Niemann S, Muller U (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26:268–270

    Article  CAS  PubMed  Google Scholar 

  12. Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, Fountain JW, Brereton A, Nicholson J, Mitchell AL et al (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249:181–186

    Article  CAS  PubMed  Google Scholar 

  13. Hao HX, Khalimonchuk O, Schraders M, Dephoure N, Bayley JP, Kunst H, Devilee P, Cremers CW, Schiffman JD, Bentz BG et al (2009) SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325:1139–1142

    Article  CAS  PubMed  Google Scholar 

  14. Castro-Vega LJ, Buffet A, De Cubas AA, Cascon A, Menara M, Khalifa E, Amar L, Azriel S, Bourdeau I, Chabre O et al (2014) Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet 23:2440–2446

    Article  CAS  PubMed  Google Scholar 

  15. Schlisio S, Kenchappa RS, Vredeveld LC, George RE, Stewart R, Greulich H, Shahriari K, Nguyen NV, Pigny P, Dahia PL et al (2008) The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev 22:884–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yeh IT, Lenci RE, Qin Y, Buddavarapu K, Ligon AH, Leteurtre E, Do Cao C, Cardot-Bauters C, Pigny P, Dahia PL (2008) A germline mutation of the KIF1B beta gene on 1p36 in a family with neural and nonneural tumors. Hum Genet 124:279–285

    Article  CAS  PubMed  Google Scholar 

  17. Welander J, Andreasson A, Juhlin CC, Wiseman RW, Backdahl M, Hoog A, Larsson C, Gimm O, Soderkvist P (2014) Rare germline mutations identified by targeted next-generation sequencing of susceptibility genes in pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 99:E1352–E1360

    Article  CAS  PubMed  Google Scholar 

  18. Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F, Landa I, Leandro-Garcia LJ, Leton R, Honrado E, Ramos-Medina R, Caronia D, Pita G et al (2011) Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 43:663–667

    Article  CAS  PubMed  Google Scholar 

  19. Burnichon N, Cascon A, Schiavi F, Morales NP, Comino-Mendez I, Abermil N, Inglada-Perez L, de Cubas AA, Amar L, Barontini M et al (2012) MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res 18:2828–2837

    Article  CAS  PubMed  Google Scholar 

  20. Romero OA, Torres-Diz M, Pros E, Savola S, Gomez A, Moran S, Saez C, Iwakawa R, Villanueva A, Montuenga LM et al. (2013) MAX inactivation in small-cell lung cancer disrupts the MYC-SWI/SNF programs and is synthetic lethal with BRG1. Cancer Discov. 2159–8290. doi:10.1158/2159-8290.CD-13-0799

  21. Atchley WR, Fitch WM (1995) Myc and Max: molecular evolution of a family of proto-oncogene products and their dimerization partner. Proc Natl Acad Sci U S A 92:10217–10221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Vervoorts J, Luscher B (1999) DNA binding of Myc/Max/Mad network complexes to oligonucleotides containing two E box elements: c-Myc/Max heterodimers do not bind DNA cooperatively. Biol Chem 380:1121–1126

    Article  CAS  PubMed  Google Scholar 

  23. Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699

    Article  CAS  PubMed  Google Scholar 

  24. Beaulieu ME, McDuff FO, Frappier V, Montagne M, Naud JF, Lavigne P (2012) New structural determinants for c-Myc specific heterodimerization with Max and development of a novel homodimeric c-Myc b-HLH-LZ. J Mol Recognit 25:414–426

    Article  CAS  PubMed  Google Scholar 

  25. Gallant P, Steiger D (2009) Myc’s secret life without Max. Cell Cycle 8:3848–3853

    Article  CAS  PubMed  Google Scholar 

  26. Cascon A, Robledo M (2012) MAX and MYC: a heritable breakup. Cancer Res 72:3119–3124

    Article  CAS  PubMed  Google Scholar 

  27. Rattenberry E, Vialard L, Yeung A, Bair H, McKay K, Jafri M, Canham N, Cole TR, Denes J, Hodgson SV et al (2013) A comprehensive next generation sequencing-based genetic testing strategy to improve diagnosis of inherited pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 98:E1248–E1256

    Article  CAS  PubMed  Google Scholar 

  28. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081

    Article  CAS  PubMed  Google Scholar 

  29. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD, Radivojac P (2009) Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25:2744–2750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R (2009) Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat 30:1237–1244

    Article  CAS  PubMed  Google Scholar 

  32. Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, Brezovsky J, Damborsky J (2014) PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol 10, e1003440. doi:10.1371/journal.pcbi.1003440

    Article  PubMed Central  PubMed  Google Scholar 

  33. Capriotti E, Altman RB, Bromberg Y (2013) Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics 14(Suppl 3):S2

    Article  PubMed Central  PubMed  Google Scholar 

  34. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  CAS  PubMed  Google Scholar 

  36. Brownlie P, Ceska T, Lamers M, Romier C, Stier G, Teo H, Suck D (1997) The crystal structure of an intact human Max-DNA complex: new insights into mechanisms of transcriptional control. Structure 5:509–520

    Article  CAS  PubMed  Google Scholar 

  37. Nair SK, Burley SK (2003) X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112:193–205

    Article  CAS  PubMed  Google Scholar 

  38. Thusberg J, Olatubosun A, Vihinen M (2011) Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat 32:358–368

    Article  PubMed  Google Scholar 

  39. Olatubosun A, Valiaho J, Harkonen J, Thusberg J, Vihinen M (2012) PON-P: integrated predictor for pathogenicity of missense variants. Hum Mutat 33:1166–1174

    Article  CAS  PubMed  Google Scholar 

  40. Gonzalez-Perez A, Lopez-Bigas N (2011) Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am J Hum Genet 88:440–449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kenna KP, McLaughlin RL, Hardiman O, Bradley DG (2013) Using reference databases of genetic variation to evaluate the potential pathogenicity of candidate disease variants. Hum Mutat. doi:10.1002/humu.22303

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Fondo de Investigaciones Sanitarias (projects PI12/00236 and PI11/01359 to A.C. and M.R., respectively), the Fundación Mutua Madrileña (project AP2775/2008 to M.R.), and a grant from the European Community’s Seventh Framework Programme (ENS@T-CANCER; HEALTH-F2-2010-259735). Aguirre A. de Cubas and Veronika Mancikova are predoctoral fellows in “la Caixa”/CNIO International PhD Programme. Lucía Inglada-Pérez and Iñaki Comino-Méndez are predoctoral fellows with the CIBERER and the Fundacion Ferrer, respectively.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cascón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comino-Méndez, I., Leandro-García, L.J., Montoya, G. et al. Functional and in silico assessment of MAX variants of unknown significance. J Mol Med 93, 1247–1255 (2015). https://doi.org/10.1007/s00109-015-1306-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1306-y

Keywords

Navigation