Skip to main content
Log in

Selective homocysteine-lowering gene transfer attenuates pressure overload-induced cardiomyopathy via reduced oxidative stress

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Plasma homocysteine levels predict heart failure incidence in prospective epidemiological studies. We evaluated whether selective homocysteine-lowering gene transfer beneficially affects cardiac remodeling and function in a model of pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC). Female C57BL/6 low-density lipoprotein receptor (Ldlr −/−) cystathionine-β-synthase (Cbs +/−) mice were fed standard chow (control mice) or a folate-depleted, methionine-enriched diet to induce hyperhomocysteinemia (diet mice). Three weeks after initiation of thisdiet, mice were intravenously injected with 5 × 1010 viral particles of an E1E3E4-deleted hepatocyte-specific adenoviral vector expressing Cbs (AdCBS), with the same dose of control vector, or with saline buffer. TAC or sham operation was performed 2 weeks later. AdCBS gene transfer resulted in 86.4 % (p < 0.001) and 84.6 % (p < 0.001) lower homocysteine levels in diet sham mice and diet TAC mice, respectively. Mortality rate was significantly reduced in diet AdCBS TAC mice compared to diet TAC mice during a follow-up period of 8 weeks (hazard ratio for mortality 0.495, 95 % CI 0.249 to 0.985). Left ventricular hypertrophy (p < 0.01) and interstitial myocardial fibrosis (p < 0.001) were strikingly lower in control TAC mice and diet AdCBS TAC mice compared to diet TAC mice. Diastolic function in diet AdCBS TAC mice was similar to that of control TAC mice and was significantly improved compared to diet TACmice. AdCBS gene transfer potently reduced oxidative stress as evidenced by a reduction of plasma TBARS and a reduction of myocardial 3-nitrotyrosine-positive area (%). In conclusion, selective homocysteine lowering potently attenuates pressure overload-induced cardiomyopathy via reduced oxidative stress.

Key message

  • Plasma homocysteine levels predict heart failure incidence in epidemiological studies.

  • Transverse aortic constriction (TAC) induces pressure overload.

  • Selective homocysteine-lowering gene therapy reduces mortality after TAC.

  • Selective homocysteine lowering attenuates cardiac hypertrophy and fibrosis after TAC.

  • Decreased homocysteine levels enhance diastolic function and lower oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sundstrom J, Sullivan L, Selhub J, Benjamin EJ, D’Agostino RB, Jacques PF, Rosenberg IH, Levy D, Wilson PW, Vasan RS (2004) Relations of plasma homocysteine to left ventricular structure and function: the Framingham Heart Study. Eur Heart J 25(6):523–530

    Article  CAS  PubMed  Google Scholar 

  2. Nasir K, Tsai M, Rosen BD, Fernandes V, Bluemke DA, Folsom AR, Lima JA (2007) Elevated homocysteine is associated with reduced regional left ventricular function: the Multi-Ethnic Study of Atherosclerosis. Circulation 115(2):180–187

    Article  CAS  PubMed  Google Scholar 

  3. Ruhui L, Jinfa J, Jiahong X, Wenlin M (2014) Influence of hyperhomocysteinemia on left ventricular diastolic function in Chinese patients with hypertension. Herz. doi:10.1007/s00059-014-4098-x

    PubMed  Google Scholar 

  4. Washio T, Nomoto K, Watanabe I, Tani S, Nagao K, Hirayama A (2011) Relationship between plasma homocysteine levels and congestive heart failure in patients with acute myocardial infarction. Homocysteine and congestive heart failure. Int Heart J 52(4):224–228

    Article  CAS  PubMed  Google Scholar 

  5. Vasan RS, Beiser A, D’Agostino RB, Levy D, Selhub J, Jacques PF, Rosenberg IH, Wilson PW (2003) Plasma homocysteine and risk for congestive heart failure in adults without prior myocardial infarction. JAMA 289(10):1251–1257

    Article  CAS  PubMed  Google Scholar 

  6. May HT, Alharethi R, Anderson JL, Muhlestein JB, Reyna SP, Bair TL, Horne BD, Kfoury AG, Carlquist JF, Renlund DG (2007) Homocysteine levels are associated with increased risk of congestive heart failure in patients with and without coronary artery disease. Cardiology 107(3):178–184

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Cui L, Joseph J, Jiang B, Pimental D, Handy DE, Liao R, Loscalzo J (2012) Homocysteine induces cardiomyocyte dysfunction and apoptosis through p38 MAPK-mediated increase in oxidant stress. J Mol Cell Cardiol 52(3):753–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Moshal KS, Tipparaju SM, Vacek TP, Kumar M, Singh M, Frank IE, Patibandla PK, Tyagi N, Rai J, Metreveli N et al (2008) Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 295(2):H890–H897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Raaf L, Noll C, Cherifi Mel H, Samuel JL, Delcayre C, Delabar JM, Benazzoug Y, Janel N (2011) Myocardial fibrosis and TGFB expression in hyperhomocysteinemic rats. Mol Cell Biochem 347(1–2):63–70

    Article  CAS  PubMed  Google Scholar 

  10. Kundu S, Kumar M, Sen U, Mishra PK, Tyagi N, Metreveli N, Lominadze D, Rodriguez W, Tyagi SC (2009) Nitrotyrosinylation, remodeling and endothelial-myocyte uncoupling in iNOS, cystathionine beta synthase (CBS) knockouts and iNOS/CBS double knockout mice. J Cell Biochem 106(1):119–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Muthuramu I, Jacobs F, Singh N, Gordts SC, De Geest B (2013) Selective homocysteine lowering gene transfer improves infarct healing, attenuates remodelling, and enhances diastolic function after myocardial infarction in mice. PLoS One 8(5), e63710. doi:10.1371/journal.pone.0063710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Buys ES, Raher MJ, Blake SL, Neilan TG, Graveline AR, Passeri JJ, Llano M, Perez-Sanz TM, Ichinose F, Janssens S et al (2007) Cardiomyocyte-restricted restoration of nitric oxide synthase 3 attenuates left ventricular remodeling after chronic pressure overload. Am J Physiol Heart Circ Physiol 293(1):H620–H627

    Article  CAS  PubMed  Google Scholar 

  13. Jacobs F, Van Craeyveld E, Muthuramu I, Gordts SC, Emmerechts J, Hoylaerts M, Herijgers P, De Geest B (2011) Correction of endothelial dysfunction after selective homocysteine lowering gene therapy reduces arterial thrombogenicity but has no effect on atherogenesis. J Mol Med 89(10):1051–1058

    Article  CAS  PubMed  Google Scholar 

  14. Jacobs F, Snoeys J, Feng Y, Van Craeyveld E, Lievens J, Armentano D, Cheng SH, De Geest B (2008) Direct comparison of hepatocyte-specific expression cassettes following adenoviral and nonviral hydrodynamic gene transfer. Gene Ther 15(8):594–603

    Article  CAS  PubMed  Google Scholar 

  15. Van Linthout S, Lusky M, Collen D, De Geest B (2002) Persistent hepatic expression of human apo A-I after transfer with a helper-virus independent adenoviral vector. Gene Ther 9(22):1520–1528

    Article  PubMed  Google Scholar 

  16. Gordts SC, Van Craeyveld E, Muthuramu I, Singh N, Jacobs F, De Geest B (2012) Lipid lowering and HDL raising gene transfer increase endothelial progenitor cells, enhance myocardial vascularity, and improve diastolic function. PLoS One 7(10), e46849. doi:10.1371/journal.pone.0046849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Van Craeyveld E, Jacobs F, Gordts SC, De Geest B (2012) Low-density lipoprotein receptor gene transfer in hypercholesterolemic mice improves cardiac function after myocardial infarction. Gene Ther 19(8):860–871

    Article  PubMed Central  PubMed  Google Scholar 

  18. Van Craeyveld E, Gordts SC, Nefyodova E, Jacobs F, De Geest B (2011) Regression and stabilization of advanced murine atherosclerotic lesions: a comparison of LDL lowering and HDL raising gene transfer strategies. J Mol Med 89(6):555–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hu P, Zhang D, Swenson L, Chakrabarti G, Abel ED, Litwin SE (2003) Minimally invasive aortic banding in mice: effects of altered cardiomyocyte insulin signaling during pressure overload. Am J Physiol Heart Circ Physiol 285(3):H1261–H1269

    Article  CAS  PubMed  Google Scholar 

  20. Yasuno S, Kuwahara K, Kinoshita H, Yamada C, Nakagawa Y, Usami S, Kuwabara Y, Ueshima K, Harada M, Nishikimi T et al (2013) Angiotensin II type 1a receptor signalling directly contributes to the increased arrhythmogenicity in cardiac hypertrophy. Br J Pharmacol 170(7):1384–1395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56(1):56–64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Cohn JN (1993) Post-MI remodeling. Clin Cardiol 16(5 Suppl 2):II21–II24

    Article  CAS  PubMed  Google Scholar 

  23. Barrick CJ, Dong A, Waikel R, Corn D, Yang F, Threadgill DW, Smyth SS (2009) Parent-of-origin effects on cardiac response to pressure overload in mice. Am J Physiol Heart Circ Physiol 297(3):H1003–H1009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8):589–600

    Article  CAS  PubMed  Google Scholar 

  25. Esposito G, Rapacciuolo A, Naga Prasad SV, Takaoka H, Thomas SA, Koch WJ, Rockman HA (2002) Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105(1):85–92

    Article  CAS  PubMed  Google Scholar 

  26. Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF et al (2000) The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19(23):6341–6350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH (1991) Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 114(5):345–352

    Article  CAS  PubMed  Google Scholar 

  28. Kupari M, Turto H, Lommi J (2005) Left ventricular hypertrophy in aortic valve stenosis: preventive or promotive of systolic dysfunction and heart failure? Eur Heart J 26(17):1790–1796

    Article  PubMed  Google Scholar 

  29. Herrmann W, Herrmann M, Joseph J, Tyagi SC (2007) Homocysteine, brain natriuretic peptide and chronic heart failure: a critical review. Clin Chem Lab Med 45(12):1633–1644

    CAS  PubMed  Google Scholar 

  30. Gueant Rodriguez RM, Spada R, Pooya S, Jeannesson E, Moreno Garcia MA, Anello G, Bosco P, Elia M, Romano A, Alberto JM et al (2013) Homocysteine predicts increased NT-pro-BNP through impaired fatty acid oxidation. Int J Cardiol 167(3):768–775

    Article  CAS  PubMed  Google Scholar 

  31. Sirker A, Zhang M, Murdoch C, Shah AM (2007) Involvement of NADPH oxidases in cardiac remodelling and heart failure. Am J Nephrol 27(6):649–660

    Article  CAS  PubMed  Google Scholar 

  32. McMurray J, Chopra M, Abdullah I, Smith WE, Dargie HJ (1993) Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J 14(11):1493–1498

    Article  CAS  PubMed  Google Scholar 

  33. Sorescu D, Griendling KK (2002) Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 8(3):132–140

    Article  CAS  PubMed  Google Scholar 

  34. Handy DE, Zhang Y, Loscalzo J (2005) Homocysteine down-regulates cellular glutathione peroxidase (GPx1) by decreasing translation. J Biol Chem 280(16):15518–15525

    Article  CAS  PubMed  Google Scholar 

  35. Suematsu N, Ojaimi C, Kinugawa S, Wang Z, Xu X, Koller A, Recchia FA, Hintze TH (2007) Hyperhomocysteinemia alters cardiac substrate metabolism by impairing nitric oxide bioavailability through oxidative stress. Circulation 115(2):255–262

    Article  CAS  PubMed  Google Scholar 

  36. Kolling J, Scherer EB, da Cunha AA, da Cunha MJ, Wyse AT (2011) Homocysteine induces oxidative-nitrative stress in heart of rats: prevention by folic acid. Cardiovasc Toxicol 11(1):67–73

    Article  CAS  PubMed  Google Scholar 

  37. Dayal S, Arning E, Bottiglieri T, Boger RH, Sigmund CD, Faraci FM, Lentz SR (2004) Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice. Stroke; J Cereb Circ 35(8):1957–1962

    Article  CAS  Google Scholar 

  38. Eberhardt RT, Forgione MA, Cap A, Leopold JA, Rudd MA, Trolliet M, Heydrick S, Stark R, Klings ES, Moldovan NI et al (2000) Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J Clin Invest 106(4):483–491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Mishra PK, Tyagi N, Kundu S, Tyagi SC (2009) MicroRNAs are involved in homocysteine-induced cardiac remodeling. Cell Biochem Biophys 55(3):153–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ungvari Z, Csiszar A, Edwards JG, Kaminski PM, Wolin MS, Kaley G, Koller A (2003) Increased superoxide production in coronary arteries in hyperhomocysteinemia: role of tumor necrosis factor-alpha, NAD(P)H oxidase, and inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol 23(3):418–424

    Article  CAS  PubMed  Google Scholar 

  41. Xie LH, Chen F, Karagueuzian HS, Weiss JN (2009) Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling. Circ Res 104(1):79–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N et al (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133(3):462–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97(9):900–907

    Article  CAS  PubMed  Google Scholar 

  44. Zhao W, Zhao T, Chen Y, Ahokas RA, Sun Y (2008) Oxidative stress mediates cardiac fibrosis by enhancing transforming growth factor-beta1 in hypertensive rats. Mol Cell Biochem 317(1-2):43–50

    Article  CAS  PubMed  Google Scholar 

  45. Zhao QD, Viswanadhapalli S, Williams P, Shi Q, Tan C, Yi X, Bhandari B, Abboud HE (2015) NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFkappaB signaling pathways. Circulation 131(7):643–655

    Article  CAS  PubMed  Google Scholar 

  46. Dayal S, Rodionov RN, Arning E, Bottiglieri T, Kimoto M, Murry DJ, Cooke JP, Faraci FM, Lentz SR (2008) Tissue-specific downregulation of dimethylarginine dimethylaminohydrolase in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 295(2):H816–H825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Ito A, Tsao PS, Adimoolam S, Kimoto M, Ogawa T, Cooke JP (1999) Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation 99(24):3092–3095

    Article  CAS  PubMed  Google Scholar 

  48. Lin KY, Ito A, Asagami T, Tsao PS, Adimoolam S, Kimoto M, Tsuji H, Reaven GM, Cooke JP (2002) Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation 106(8):987–992

    Article  CAS  PubMed  Google Scholar 

  49. Stuhlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP (2001) Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation 104(21):2569–2575

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Onderzoekstoelagen grant OT/13/090 of the KU Leuven and by grant G0A3114N of the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen.

Conflict of interest

None of the authors has a conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Institutional Animal Care and Research Advisory Committee of the Catholic University of Leuven; approval number P154/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart De Geest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 25051 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuramu, I., Singh, N., Amin, R. et al. Selective homocysteine-lowering gene transfer attenuates pressure overload-induced cardiomyopathy via reduced oxidative stress. J Mol Med 93, 609–618 (2015). https://doi.org/10.1007/s00109-015-1281-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1281-3

Keywords

Navigation