Skip to main content
Log in

Hydrogen sulfide upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

A Correction to this article was published on 15 January 2021

This article has been updated

Abstract

The study was designed to investigate whether H2S could upregulate expression of KATP channels in vascular smooth muscle cells (VSMCs), and by this mechanism enhances vasorelaxation in spontaneously hypertensive rats (SHR). Blood pressure, vascular structure, and vasorelaxation were analyzed. Plasma H2S was detected using polarographic sensor. SUR2B and Kir6.1 expressions were detected in VSMCs of SHR and in A7r5 cells as well as primarily cultured ASMCs using real-time PCR, western blot, immunofluorescence, and confocal imaging. Nuclear translocation of forkhead transcription factors FOXO1 and FOXO3a in ASMCs was detected using laser confocal microscopy, and their binding activity with SUR2B and Kir6.1 promoters was examined by chromatin immunoprecipitation. SHR developed hypertension at 18 weeks. They showed downregulated vascular SUR2B and Kir6.1 expressions in association with a decreased plasma H2S level. H2S donor, however, could upregulate vascular SUR2B and Kir6.1 expressions, causing a left shift of the vasorelaxation curve to pinacidil and lowered tail artery pressure in the SHR. Also, H2S antagonized endothelin-1 (ET-1)-inhibited KATP expression in A7r5 cells and cultured ASMCs. Mechanistically, H2S inhibited ET-1-stimulated p-FOXO1 and p-FOXO3a expressions (inactivated forms), but increased their nuclear translocation and the ET-1-inhibited binding of FOXO1 and FOXO3a with Kir6.1 and SUR2B promoters in ASMCs. Hence, H2S promotes vasorelaxation of SHR, at least in part, through upregulating the expression of KATP subunits by inhibiting phosphorylation of FOXO1 and FOXO3a, and stimulating FOXO1 and FOXO3a nuclear translocation and their binding activity with SUR2B and Kir6.1 promoters.

Key messages

  • H2S increased vascular SUR2B and Kir6.1 expression of SHR, promoting vasorelaxation.

  • H2S antagonized ET-1-inhibited KATP expression in A7r5 cells and cultured ASMCs.

  • H2S inhibited ET-1-induced FOXO1 and FOXO3a phosphorylation in ASMCs.

  • H2S promoted FOXO1 and FOXO3a nuclear translocation and binding with target gene promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367:1747–1757

    Article  PubMed  Google Scholar 

  2. Mancia G, Laurent S, Agabiti-Rosei E, Ambrosioni E, Burnier M, Caulfield MJ, Cifkova R, Clément D, Coca A, Dominiczak A et al (2009) Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document. J Hypertens 27:2121–2158

    Article  CAS  PubMed  Google Scholar 

  3. Raj M, Krishnakumar R (2013) Hypertension in children and adolescents: epidemiology and pathogenesis. Indian J Pediatr 80:S71–S76

    Article  PubMed  Google Scholar 

  4. Hart JL (2011) Role of sulfur-containing gaseous substances in the cardiovascular system. Front Biosci (Elite Ed) 3:736–749

    Article  Google Scholar 

  5. Zoccali C, Catalano C, Rastelli S (2009) Blood pressure control: hydrogen sulfide, a new gasotransmitter, takes stage. Nephrol Dial Transplant 24:1394–1396

    Article  PubMed  Google Scholar 

  6. Kabil O, Banerjee R (2010) Redox biochemistry of hydrogen sulfide. J Biol Chem 285:21903–21907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H (2009) Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146:623–626

    Article  CAS  PubMed  Google Scholar 

  8. Alexander SP, Mathie A, Peters JA (2008) Guide to receptors and channels (GRAC), 3rd edition. Br J Pharmacol 153(Suppl 2):S1–S209

    Article  PubMed Central  PubMed  Google Scholar 

  9. Yan H, Du J, Tang C (2004) The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun 313:22–27

    Article  CAS  PubMed  Google Scholar 

  10. Łowicka E, Bełtowski J (2007) Hydrogen sulfide (H2S)—the third gas of interest for pharmacologists. Pharmacol Rep 59:4–24

    PubMed  Google Scholar 

  11. Prabha M, Jin HF, Tian Y, Tang CS, Du JB (2008) Mechanisms responsible for pulmonary hypertension. Chin Med J 121:2604–2609

    CAS  PubMed  Google Scholar 

  12. Szabó C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935

    Article  PubMed  Google Scholar 

  13. Tang C, Li XH, Du JB (2006) Hydrogen sulfide as a new endogenous gaseous transmitter in the cardiovascular system. Curr Vasc Pharmacol 4:17–22

    Article  CAS  PubMed  Google Scholar 

  14. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yeager ME, Halley GR, Golpon HA, Voelkel NF, Tuder RM (2001) Microsatellite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension. Circ Res 88:2–11

    Article  Google Scholar 

  16. Zhu P, Huang L, Ge X, Yan F, Wu R, Ao Q (2006) Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling. Int J Exp Pathol 87:463–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R et al (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259–1268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148

    Article  CAS  PubMed  Google Scholar 

  19. Quayle JM, Nelson MT, Standen NB (1997) ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 77:1165

    CAS  PubMed  Google Scholar 

  20. Yang Y, Shi Y, Guo S, Zhang S, Cui N, Shi W, Zhu D, Jiang C (2008) PKA-dependent activation of the vascular smooth muscle isoform of KATP channels by vasoactive intestinal polypeptide and its effect on relaxation of the mesenteric resistance artery. Biochim Biophys Acta 1778:88–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Mannhold R (2004) KATP channel openers: structure-activity relationships and therapeutic potential. Med Res Rev 24:213–266

    Article  CAS  PubMed  Google Scholar 

  22. Jin HF, Du JB, Tang CS (2010) “Waste gas is not waste”: advance in the research of hydrogen sulfide. Acta Physiol Sin 62:495–504

    CAS  Google Scholar 

  23. Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M (2010) Intractions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal 13:157–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Miller TW, Isenberg JS, Roberts DD (2009) Molecular regulation of tumor angiogenesis and perfusion via redox signaling. Chem Rev 109:3099–3124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Walford G, Loscalzo J (2003) Nitric oxide in vascular biology. J Thromb Haemost 1:2112–2118

    Article  CAS  PubMed  Google Scholar 

  26. Skovgaard N, Gouliaev A, Aalling M, Simonsen U (2011) The role of endogenous H2S in cardiovascular physiology. Curr Pharm Biotechnol 12:1385–1393

    Article  CAS  PubMed  Google Scholar 

  27. Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    Article  CAS  PubMed  Google Scholar 

  28. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Fujita A, Kurachi Y (2000) Molecular aspects of ATP-sensitive K+ channels in the cardiovascular system and K+ channel openers. Pharmacol Ther 85:39–53

    Article  CAS  PubMed  Google Scholar 

  30. Lu C, Halvorsen SW (1997) Channel activators regulate ATP-sensitive potassium channel (kir6.1) expression in chick cardiomyocytes. FEBS Lett 412:121–125

    Article  CAS  PubMed  Google Scholar 

  31. Miki T, Suzuki M, Shibasaki T, Uemura H, Sato T, Yamaguchi K, Koseki H, Iwanaga T, Nakaya H, Seino S (2002) Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1. Nat Med 8:466–472

    Article  CAS  PubMed  Google Scholar 

  32. Blanco-Rivero J, Gamallo C, Aras-López R, Cobeño L, Cogolludo A, Pérez-Vizcaino F, Ferrer M, Balfagon G (2008) Decreased expression of aortic KIR6.1 and SUR2B in hypertension does not correlate with changes in the functional role of K(ATP) channels. Eur J Pharmacol 587:204–208

    Article  CAS  PubMed  Google Scholar 

  33. Philip-Couderc P, Tavares NI, Roatti A, Lerch R, Montessuit C, Baertschi AJ (2008) Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism. Circ Res 102:e20–e35

    Article  CAS  PubMed  Google Scholar 

  34. Whitfield NL, Kreimier EL, Verdial FC, Skovgaard N, Olson KR (2008) Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am J Physiol Regul Integr Comp Physiol 294:R1930–R1937

    Article  CAS  PubMed  Google Scholar 

  35. Xie L, Tiong CX, Bian JS (2012) Hydrogen sulfide protects SH-SY5Y cells against 6-hydroxydopamine-induced endoplasmic reticulum stress. Am J Physiol Cell Physiol 303:C81–C91

    Article  CAS  PubMed  Google Scholar 

  36. Zhao W, Wang R (2002) H2S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283:474–480

    Article  Google Scholar 

  37. Ingenbleek Y, Kimura H (2013) Nutritional essentiality of sulfur in health and disease. Nutr Rev 71:413–432

    Article  PubMed  Google Scholar 

  38. Kimura H (2014) Production and physiological effects of hydrogen sulfide. Antioxid Redox Signal 20:783–793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lohmeier TE (2002) Neurohumoral regulation of arterial pressure in hemorrhage and heart failure. Am J Physiol Regul Integr Comp Physiol 283:R810–R814

    Article  PubMed  Google Scholar 

  40. Bełtowski J (2010) Hypoxia in the renal medulla: implications for hydrogen sulfide signaling. J Pharmacol Exp Ther 334:358–363

    Article  PubMed  Google Scholar 

  41. Liew HC, Khoo HE, Moore PK, Bhatia M, Lu J, Moochhala SM (2007) Synergism between hydrogen sulfide (H2S) and nitric oxide (NO) in vasorelaxation induced by stonustoxin (SNTX), a lethal and hypotensive protein factor isolated from atonefish synanceia horrida venom. Life Sci 80:1664–1668

    Article  CAS  PubMed  Google Scholar 

  42. Lee SW, Cheng Y, Moore PK, Bian JS (2007) Hydrogen sulphide regulates intracellular pH in vascular smooth muscle cells. Biochem Biophys Res Commun 358:1142–1147

    Article  CAS  PubMed  Google Scholar 

  43. Weimin Z, Jing Z, Yanjie L, Rui W (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016

    Article  Google Scholar 

  44. Schreier B, Rabe S, Schneider B, Bretschneider M, Rupp S, Ruhs S, Neumann J, Rueckschloss U, Sibilia M, Gotthardt M et al (2013) Loss of epidermal growth factor receptor in vascular smooth muscle cells and cardiomyocytes causes arterial hypotension and cardiac hypertrophy. Hypertension 61:333–340

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Guan Y, Schneider A, Brandon S, Breyer RM, Breyer MD (2000) Characterization of murine vasopressor and vasodepressor prostaglandin E(2) receptors. Hypertension 35:1129–1134

    Article  CAS  PubMed  Google Scholar 

  46. Butz GM, Davisson RL (2001) Long-term telemetric measurement of cardiovascular parameters in awake mice: a physiological genomics tool. Physiol Genomics 5:89–97

    CAS  PubMed  Google Scholar 

  47. Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M, Ohura N, Fukuda T, Sato T, Sekine K, Kato S et al (2006) Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 12:133–137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Major Basic Research Development Program of People's Republic of China (2012CB517806, 2013CB933801), National Natural Science Foundation of China (81100181 and 81121061), Beijing Natural Science Foundation (7121014, 7122184), Grant of Ministry of Education, China (20130001120047) and Program for New Century Excellent Talents of Ministry of Education, China (NCET-11-0005).

Conflict of interest

The authors have no financial conflict to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfang Jin.

Additional information

Yan Sun, Yaqian Huang, and Rongyuan Zhang contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Huang, Y., Zhang, R. et al. Hydrogen sulfide upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats. J Mol Med 93, 439–455 (2015). https://doi.org/10.1007/s00109-014-1227-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1227-1

Keywords

Navigation