Skip to main content

Advertisement

Log in

Tumor-α9β1 integrin-mediated signaling induces breast cancer growth and lymphatic metastasis via the recruitment of cancer-associated fibroblasts

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Tumor-derived matricellular proteins such as osteopontin (OPN) and tenascin-C (TN-C) have been implicated in tumor growth and metastasis. However, the molecular basis of how these proteins contribute to tumor progression remains to be elucidated. Importantly, these matricellular proteins are known to interact with α9β1 integrin. Therefore, we hypothesized that tumor-derived α9β1 integrin may contribute to tumor progression. To clarify the roles of α9β1 integrin in tumor growth and lymphatic metastasis, we used an inhibitory anti-human α9β1 integrin antibody (anti-hα9β1 antibody) and a α9β1 integrin-positive human breast cancer cell line, MDA-MB-231 luc-D3H2LN (D3H2LN), in vitro functional assays, and an in vivo orthotopic xenotransplantation model. In this study, we demonstrated that tumor, but not host α9β1 integrin, contributes to tumor growth, lymphatic metastasis, recruitment of cancer-associated fibroblasts (CAFs), and host-derived OPN production. We also found that CAFs contributed to tumor growth, lymphatic metastasis, and host-derived OPN levels. Consistent with those findings, tumor volume was well-correlated with numbers of CAFs and levels of host-derived OPN. Furthermore, it was shown that the inoculation of D3H2LN cells into mammary fat pads with mouse embryonic fibroblasts (MEFs), obtained from wild type, but not OPN knock-out mice, resulted in enhancement of tumor growth, thus indicating that CAF-derived OPN enhanced tumor growth. These results suggested that tumor α9β1-mediated signaling plays a pivotal role in generating unique primary tumor tissue microenvironments, which favor lymphatic metastasis and tumor growth.

Key messages

  • Tumor α9β1 integrin promotes lymphatic metastasis through enhancing invasion.

  • Tumor α9β1 integrin promotes tumor growth through CAFs.

  • Tumor α9β1 integrin enhances the recruitment of CAFs into the primary tumor.

  • Tumor cells induce the production of OPN by CAFs in the primary tumor.

  • CAF-derived OPN promotes tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564

    Article  CAS  PubMed  Google Scholar 

  2. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  4. Uede T (2011) Osteopontin, intrinsic tissue regulator of intractable inflammatory diseases. Pathol Int 61:265–280

    Article  CAS  PubMed  Google Scholar 

  5. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E, Massague J (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17:867–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA, Reinhardt F, Harris LN, Hylander BL, Repasky EA et al (2008) Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133:994–1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bellahcene A, Castronovo V, Ogbureke KU, Fisher LW, Fedarko NS (2008) Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 8:212–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Anborgh PH, Wilson SM, Tuck AB, Winquist E, Schmidt N, Hart R, Kon S, Maeda M, Uede T, Stitt LW et al (2009) New dual monoclonal ELISA for measuring plasma osteopontin as a biomarker associated with survival in prostate cancer: clinical validation and comparison of multiple ELISAs. Clin Chem 55:895–903

    Article  CAS  PubMed  Google Scholar 

  9. Anderberg C, Li H, Fredriksson L, Andrae J, Betsholtz C, Li X, Eriksson U, Pietras K (2009) Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res 69:369–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Pazolli E, Alspach E, Milczarek A, Prior J, Piwnica-Worms D, Stewart SA (2012) Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Res 72:2251–2261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. O’Connell JT, Sugimoto H, Cooke VG, MacDonald BA, Mehta AI, LeBleu VS, Dewar R, Rocha RM, Brentani RR, Resnick MB et al (2011) VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci U S A 108:16002–16007

    Article  PubMed Central  PubMed  Google Scholar 

  12. Yokosaki Y, Palmer EL, Prieto AL, Crossin KL, Bourdon MA, Pytela R, Sheppard D (1994) The integrin alpha 9 beta 1 mediates cell attachment to a non-RGD site in the third fibronectin type III repeat of tenascin. J Biol Chem 269:26691–26696

    CAS  PubMed  Google Scholar 

  13. Allen MD, Vaziri R, Green M, Chelala C, Brentnall AR, Dreger S, Vallath S, Nitch-Smith H, Hayward J, Carpenter R et al (2011) Clinical and functional significance of alpha9beta1 integrin expression in breast cancer: a novel cell-surface marker of the basal phenotype that promotes tumour cell invasion. J Pathol 223:646–658

    Article  PubMed  Google Scholar 

  14. Vantyghem SA, Allan AL, Postenka CO, Al-Katib W, Keeney M, Tuck AB, Chambers AF (2005) A new model for lymphatic metastasis: development of a variant of the MDA-MB-468 human breast cancer cell line that aggressively metastasizes to lymph nodes. Clin Exp Metastasis 22:351–361

    Article  CAS  PubMed  Google Scholar 

  15. Farnsworth RH, Lackmann M, Achen MG, Stacker SA (2013) Vascular remodeling in cancer. Oncogene. doi:10.1038/onc.2013.304

    PubMed  Google Scholar 

  16. Vlahakis NE, Young BA, Atakilit A, Sheppard D (2005) The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin alpha9beta1. J Biol Chem 280:4544–4552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Feng F, Rittling SR (2000) Mammary tumor development in MMTV-c-myc/MMTV-v-Ha-ras transgenic mice is unaffected by osteopontin deficiency. Breast Cancer Res Treat 63:71–79

    Article  CAS  PubMed  Google Scholar 

  18. Chong HC, Tan CK, Huang RL, Tan NS (2012) Matricellular proteins: a sticky affair with cancers. J Oncol 351089. doi: 10.1155/2012/351089

  19. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  CAS  PubMed  Google Scholar 

  20. Ijichi H, Chytil A, Gorska AE, Aakre ME, Bierie B, Tada M, Mohri D, Miyabayashi K, Asaoka Y, Maeda S et al (2011) Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J Clin Invest 121:4106–4117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Neufert C, Becker C, Tureci O, Waldner MJ, Backert I, Floh K, Atreya I, Leppkes M, Jefremow A, Vieth M et al (2013) Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK. J Clin Invest 123:1428–1443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Pena C, Cespedes MV, Lindh MB, Kiflemariam S, Mezheyeuski A, Edqvist PH, Hagglof C, Birgisson H, Bojmar L, Jirstrom K et al (2013) STC1 expression by cancer-associated fibroblasts drives metastasis of colorectal cancer. Cancer Res 73:1287–1297

    Article  CAS  PubMed  Google Scholar 

  23. Tyan SW, Kuo WH, Huang CK, Pan CC, Shew JY, Chang KJ, Lee EY, Lee WH (2011) Breast cancer cells induce cancer-associated fibroblasts to secrete hepatocyte growth factor to enhance breast tumorigenesis. PLoS One 6:e15313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Taniwaki K, Fukamachi H, Komori K, Ohtake Y, Nonaka T, Sakamoto T, Shiomi T, Okada Y, Itoh T, Itohara S et al (2007) Stroma-derived matrix metalloproteinase (MMP)-2 promotes membrane type 1-MMP-dependent tumor growth in mice. Cancer Res 67:4311–4319

    Article  CAS  PubMed  Google Scholar 

  25. Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA (2009) Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS One 4:e7965

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A, Andreeff M, Marini FC (2012) Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One 7:e30563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Elkabets M, Gifford AM, Scheel C, Nilsson B, Reinhardt F, Bray MA, Carpenter AE, Jirstrom K, Magnusson K, Ebert BL et al (2011) Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J Clin Invest 121:784–799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Saldanha-Gama RF, Moraes JA, Mariano-Oliveira A, Coelho AL, Walsh EM, Marcinkiewicz C, Barja-Fidalgo C (2010) alpha(9)beta(1) integrin engagement inhibits neutrophil spontaneous apoptosis: involvement of Bcl-2 family members. Biochim Biophys Acta 1803:848–857

    Article  CAS  PubMed  Google Scholar 

  29. Ross EA, Douglas MR, Wong SH, Ross EJ, Curnow SJ, Nash GB, Rainger E, Scheel-Toellner D, Lord JM, Salmon M et al (2006) Interaction between integrin alpha9beta1 and vascular cell adhesion molecule-1 (VCAM-1) inhibits neutrophil apoptosis. Blood 107:1178–1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hutti JE, Pfefferle AD, Russell SC, Sircar M, Perou CM, Baldwin AS (2012) Oncogenic PI3K mutations lead to NF-kappaB-dependent cytokine expression following growth factor deprivation. Cancer Res 72:3260–3269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kanayama M, Morimoto J, Matsui Y, Ikesue M, Danzaki K, Kurotaki D, Ito K, Yoshida T, Uede T (2011) alpha9beta1 integrin-mediated signaling serves as an intrinsic regulator of pathogenic Th17 cell generation. J Immunol 187:5851–5864

    Article  CAS  PubMed  Google Scholar 

  32. Hugo HJ, Lebret S, Tomaskovic-Crook E, Ahmed N, Blick T, Newgreen DF, Thompson EW, Ackland ML (2012) Contribution of fibroblast and mast cell (afferent) and tumor (efferent) IL-6 effects within the tumor microenvironment. Cancer Microenviro Off J Int Cancer Microenviron Soc. doi:10.1007/s12307-012-0098-7

    Google Scholar 

  33. Sugimoto H, Mundel TM, Kieran MW, Kalluri R (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5:1640–1646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Chiemi Kimura and Orie Yamamori (Hokkaido University) for excellent technical assistance, and Tetsuro Nakamura (Gene Techono Science Corporation, Sapporo, Japan) for valuable suggestion about the use of anti-hα9β1 antibody and for valuable discussions during course of experiments. This study was supported by grant-in-aids from the Ministry of Education, Culture, Science, Sports, and Technology of Japan (21390113(B)) to Toshimitsu Uede.

Disclosure

There are no potential conflicts of interest for all authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daichi Ota or Toshimitsu Uede.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1003 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ota, D., Kanayama, M., Matsui, Y. et al. Tumor-α9β1 integrin-mediated signaling induces breast cancer growth and lymphatic metastasis via the recruitment of cancer-associated fibroblasts. J Mol Med 92, 1271–1281 (2014). https://doi.org/10.1007/s00109-014-1183-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1183-9

Keywords

Navigation