Skip to main content
Log in

Kinin B1 receptor deficiency attenuates cisplatin-induced acute kidney injury by modulating immune cell migration

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Cisplatin is a chemotherapeutic agent that causes severe renal dysfunction. The kinin B1 receptor has been associated with the migration of immune cells to injured tissue as well as with renal inflammation. To examine the role of the kinin B1 receptor in cisplatin-induced acute kidney injury, we used kinin B1 receptor knockout mice and treatment with a receptor antagonist before and after cisplatin administration. Cisplatin injection caused exacerbation of renal macrophage and neutrophil migration, higher levels of serum creatinine and blood urea, upregulation of B1 receptor mRNA and an increase in pro-inflammatory cytokines expression. B1 receptor knockout mice exhibited a reduction in serum creatinine and blood urea levels, diminished apoptosis, and decreased cisplatin-induced upregulation of inflammatory components. Moreover, treatment with the B1 receptor antagonist prior to cisplatin administration normalized serum creatinine, blood urea levels, protected from acute tubular necrosis, apoptosis-related genes, and prevented upregulation of pro-inflammatory cytokines. Thus, we propose that kinins have an important role in cisplatin-induced acute kidney injury by impairing immune cells migration to renal tissue during cisplatin nephrotoxicity.

Key message

  • Kinin B1 receptor is upregulated after cisplatin exposure.

  • Kinin B1 receptor deficiency diminishes the nephrotoxicity caused by cisplatin.

  • Kinin B1 receptor deficiency ameliorates the inflammatory response.

  • Kinin B1 receptor deficiency diminishes apoptosis caused by cisplatin.

  • Kinin B1 receptor antagonism ameliorates renal function after cisplatin injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ramesh G, Reeves WB (2003) TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am J Physiol Renal Physiol 285:F610–F618

    PubMed  CAS  Google Scholar 

  2. Ramesh G, Reeves WB (2002) TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110:835–842

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of cisplatin nephrotoxicity. Toxins (Basel) 2:2490–2518

    Article  CAS  Google Scholar 

  4. Okusa MD (2002) The inflammatory cascade in acute ischemic renal failure. Nephron 90:133–138

    Article  PubMed  CAS  Google Scholar 

  5. Regoli D, Barabe J (1980) Pharmacology of bradykinin and related kinins. Pharmacol Rev 32:1–46

    PubMed  CAS  Google Scholar 

  6. Barros CC, Haro A, Russo FJ, Schadock I, Almeida SS, Reis FC, Moraes MR, Haidar A, Hirata AE, Mori M et al (2012) Bradykinin inhibits hepatic gluconeogenesis in obese mice. Lab Investig 92:1419–1427

    Article  PubMed  CAS  Google Scholar 

  7. Araujo RC, Mori MA, Merino VF, Bascands JL, Schanstra JP, Zollner RL, Villela CA, Nakaie CR, Paiva AC, Pesquero JL et al (2006) Role of the kinin B1 receptor in insulin homeostasis and pancreatic islet function. Biol Chem 387:431–436

    Article  PubMed  CAS  Google Scholar 

  8. Marceau F, Hess JF, Bachvarov DR (1998) The B1 receptors for kinins. Pharmacol Rev 50:357–386

    PubMed  CAS  Google Scholar 

  9. Marceau F, Bachvarov DR (1998) Kinin receptors. Clin Rev Allergy Immunol 16:385–401

    Article  PubMed  CAS  Google Scholar 

  10. McLean PG, Ahluwalia A, Perretti M (2000) Association between kinin B(1) receptor expression and leukocyte trafficking across mouse mesenteric postcapillary venules. J Exp Med 192:367–380

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Araujo RC, Kettritz R, Fichtner I, Paiva AC, Pesquero JB, Bader M (2001) Altered neutrophil homeostasis in kinin B1 receptor-deficient mice. Biol Chem 382:91–95

    Article  PubMed  CAS  Google Scholar 

  12. Pesquero JB, Araujo RC, Heppenstall PA, Stucky CL, Silva JA Jr, Walther T, Oliveira SM, Pesquero JL, Paiva AC, Calixto JB et al (2000) Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc Natl Acad Sci U S A 97:8140–8145

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Dray A, Perkins M (1993) Bradykinin and inflammatory pain. Trends Neurosci 16:99–104

    Article  PubMed  CAS  Google Scholar 

  14. Perretti M, Appleton I, Parente L, Flower RJ (1993) Pharmacology of interleukin-1-induced neutrophil migration. Agents Actions 38(2):C64–65

    Google Scholar 

  15. Ahluwalia A, Perretti M (1994) Calcitonin gene-related peptides modulate the acute inflammatory response induced by interleukin-1 in the mouse. Eur J Pharmacol 264:407–415

    Article  PubMed  CAS  Google Scholar 

  16. Sato E, Koyama S, Nomura H, Kubo K, Sekiguchi M (1996) Bradykinin stimulates alveolar macrophages to release neutrophil, monocyte, and eosinophil chemotactic activity. J Immunol 157:3122–3129

    PubMed  CAS  Google Scholar 

  17. Koyama S, Sato E, Numanami H, Kubo K, Nagai S, Izumi T (2000) Bradykinin stimulates lung fibroblasts to release neutrophil and monocyte chemotactic activity. Am J Respir Cell Mol Biol 22:75–84

    Article  PubMed  CAS  Google Scholar 

  18. Duchene J, Ahluwalia A (2009) The kinin B(1) receptor and inflammation: new therapeutic target for cardiovascular disease. Curr Opin Pharmacol 9:125–131

    Article  PubMed  CAS  Google Scholar 

  19. Lim SK, Park SH (2012) The high glucose-induced stimulation of B1R and B2R expression via CB(1)R activation is involved in rat podocyte apoptosis. Life Sci 91:895–906

    Article  PubMed  CAS  Google Scholar 

  20. Wang PH, Cenedeze MA, Pesquero JB, Pacheco-Silva A, Camara NO (2006) Influence of bradykinin B1 and B2 receptors in the immune response triggered by renal ischemia-reperfusion injury. Int Immunopharmacol 6:1960–1965

    Article  PubMed  CAS  Google Scholar 

  21. Wang PH, Campanholle G, Cenedeze MA, Feitoza CQ, Goncalves GM, Landgraf RG, Jancar S, Pesquero JB, Pacheco-Silva A, Camara NO (2008) Bradykinin [corrected] B1 receptor antagonism is beneficial in renal ischemia-reperfusion injury. PLoS One 3:e3050

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Klein J, Gonzalez J, Decramer S, Bandin F, Neau E, Salant DJ, Heeringa P, Pesquero JB, Schanstra JP, Bascands JL (2010) Blockade of the kinin B1 receptor ameloriates glomerulonephritis. J Am Soc Nephrol 21:1157–1164

    Article  PubMed Central  PubMed  Google Scholar 

  23. Klein J, Gonzalez J, Duchene J, Esposito L, Pradere JP, Neau E, Delage C, Calise D, Ahluwalia A, Carayon P et al (2009) Delayed blockade of the kinin B1 receptor reduces renal inflammation and fibrosis in obstructive nephropathy. FASEB J 23:134–142

    Article  PubMed  CAS  Google Scholar 

  24. Pereira RL, Buscariollo BN, Correa-Costa M, Semedo P, Oliveira CD, Reis VO, Maquigussa E, Araujo RC, Braga TT, Soares MF et al (2011) Bradykinin receptor 1 activation exacerbates experimental focal and segmental glomerulosclerosis. Kidney Int 79:1217–1227

    Article  PubMed  CAS  Google Scholar 

  25. Wang PH, Cenedeze MA, Campanholle G, Malheiros DM, Torres HA, Pesquero JB, Pacheco-Silva A, Camara NO (2009) Deletion of bradykinin B1 receptor reduces renal fibrosis. Int Immunopharmacol 9:653–657

    Article  PubMed  CAS  Google Scholar 

  26. Westermann D, Lettau O, Sobirey M, Riad A, Bader M, Schultheiss HP, Tschope C (2008) Doxorubicin cardiomyopathy-induced inflammation and apoptosis are attenuated by gene deletion of the kinin B1 receptor. Biol Chem 389:713–718

    Article  PubMed  CAS  Google Scholar 

  27. Ferreira J, Campos MM, Araujo R, Bader M, Pesquero JB, Calixto JB (2002) The use of kinin B1 and B2 receptor knockout mice and selective antagonists to characterize the nociceptive responses caused by kinins at the spinal level. Neuropharmacology 43:1188–1197

    Article  PubMed  CAS  Google Scholar 

  28. Tadagavadi RK, Reeves WB (2010) Renal dendritic cells ameliorate nephrotoxic acute kidney injury. J Am Soc Nephrol 21:53–63

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Li L, Huang L, Sung SS, Vergis AL, Rosin DL, Rose CE Jr, Lobo PI, Okusa MD (2008) The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int 74:1526–1537

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Lu LH, Oh DJ, Dursun B, He Z, Hoke TS, Faubel S, Edelstein CL (2008) Increased macrophage infiltration and fractalkine expression in cisplatin-induced acute renal failure in mice. J Pharmacol Exp Ther 324:111–117

    Article  PubMed  CAS  Google Scholar 

  31. Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD (2007) Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int 71:619–628

    Article  PubMed  CAS  Google Scholar 

  32. Kim HR, Lee MK, Park AJ, Park ES, Kim DS, Ahn J, Kim J, Kim SH, Oh DJ (2011) Reduction of natural killer and natural killer T cells is not protective in cisplatin-induced acute renal failure in mice. Nephrology (Carlton) 16:545–551

    Article  CAS  Google Scholar 

  33. Ramesh G, Reeves WB (2004) Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-alpha. Kidney Int 65:490–499

    Article  PubMed  CAS  Google Scholar 

  34. Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, Somerset H, Oh DJ, Lu L, Klein CL, Dinarello CA et al (2007) Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther 322:8–15

    Article  PubMed  CAS  Google Scholar 

  35. Kimura A, Ishida Y, Inagaki M, Nakamura Y, Sanke T, Mukaida N, Kondo T (2012) Interferon-gamma is protective in cisplatin-induced renal injury by enhancing autophagic flux. Kidney Int 82:1093–1104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by FAPESP (Fundação de Apoio a Pesquisa do Estado de São Paulo), grant 2011/03528-0.

Conflict of interest

All the authors declared no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo C. Araújo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 13 kb)

Figure 10

Cisplatin and hepatotoxicity. Hepatotoxicity after 96 h of cisplatin administration evaluated by serum levels of AST (a) and ALT (b). *p < 0.05 compared to the control. Bars = mean and s.e.m. (JPEG 165 kb)

Figure 11

Cisplatin induced alterations in peripheral blood. Ninety-six hours after cisplatin administration, levels of leukocytes (a), neutrophils (b), lymphocytes (c) and monocytes (d). *p < 0.05 compared to the control. Bars = mean and s.e.m. (JPEG 914 kb)

Figure 12

Cisplatin inducing bone marrow supression. Four days after cisplatin administration, bone marrow cells were analyzed for monocytic cells (a), myeloid cells (b), hematopoietic stem cells (c) and progenitor cells (d) in bone marrow *p < 0.05 compared to the control, #p < 0.05 compared to CIS. Bars = mean and s.e.m. (JPEG 951 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estrela, G.R., Wasinski, F., Almeida, D.C. et al. Kinin B1 receptor deficiency attenuates cisplatin-induced acute kidney injury by modulating immune cell migration. J Mol Med 92, 399–409 (2014). https://doi.org/10.1007/s00109-013-1116-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1116-z

Keywords

Navigation