Skip to main content
Log in

Role of macrophages in bile acid-induced inflammatory response of fetal lung during maternal cholestasis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Infant respiratory distress syndrome (iRDS) in babies born from women with intrahepatic cholestasis of pregnancy (ICP) has been associated with intrauterine exposure to high bile acid levels. Here, we have investigated the role of macrophages in hypercholanemia-induced changes in maternal and fetal lung. Obstructive cholestasis in pregnant rats (OCP) was maintained from day 14 of gestation to term. Gene expression was determined by RT-QPCR, Western blot, and immunofluorescence. The maternal-fetal bile acid pool was radiolabelled using [3H]-taurocholate. OCP resulted in increased bile acids in maternal and fetal organs, including lungs. This was accompanied by structural changes in lung tissue, more marked in fetuses (peribronchial edema, collapse of alveolar spaces and deposits of hyaline material in the alveolar lumen), and infiltration of lung tissue by inflammatory cells. The abundance of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF) was also increased in OCP group. Phospholipase A2-IIA (PLA2), the key enzyme in surfactant degradation, was mainly immunodetected in macrophages, which also expressed the bile acid receptor TGR5. The overall expression of PLA2 was markedly enhanced in maternal and fetal lungs of OCP group and in control maternal BALF cells incubated with bile acids. In neonates born from OCP mothers, the enhanced expression of erythropoietin suggested the presence of hypoxia due to iRDS. In conclusion, these results indicate that the accumulation of bile acids due to maternal cholestasis triggers an inflammatory response in the maternal and fetal lungs together with enhanced macrophage-associated PLA2 expression, which may play an important role in iRDS development.

Key Messages

  • Maternal cholestasis causes respiratory distress syndrome in rat neonates.

  • Cholestasis in pregnant rats causes bile acid accumulation in the fetal lung.

  • This induces lung macrophages infiltration and inflammatory response.

  • Alveolar macrophages co-express phospholipase A2-IIA and TGR5, but not FXR.

  • Bile acid accumulation stimulates phospholipase A2-IIA, but not TGR5, expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BA:

Bile acid

BALF:

Bronchoalveolar lavage fluid

EPO:

Erythropoietin

ICP:

Intrahepatic cholestasis of pregnancy

MPO:

Myeloperoxidase

OCP:

Obstructive cholestasis during pregnancy

PLA2:

Phospholipase A2

iRDS:

Infant respiratory distress syndrome

TCA:

Taurocholic acid

TLCA:

Taurolithocholic acid

References

  1. Lammert F, Marschall HU, Matern S (2003) Intrahepatic cholestasis of pregnancy. Curr Treat Options Gastroenterol 6:123–132

    Article  PubMed  Google Scholar 

  2. Zecca E, Costa S, Lauriola V, Vento G, Papacci P, Romagnoli C (2004) Bile acid pneumonia: a “new” form of neonatal respiratory distress syndrome? Pediatrics 114:269–272

    Article  PubMed  Google Scholar 

  3. el-Mir MY, Eleno N, Serrano MA, Bravo P, Marin JJ (1991) Bicarbonate-induced activation of taurocholate transport across the basal plasma membrane of human term trophoblast. Am J Physiol 260:G887–G894

    PubMed  CAS  Google Scholar 

  4. Marin JJ, Bravo P, el-Mir MY, Serrano MA (1995) ATP-dependent bile acid transport across microvillous membrane of human term trophoblast. Am J Physiol 268:G685–G694

    PubMed  CAS  Google Scholar 

  5. Blazquez AG, Briz O, Romero MR, Rosales R, Monte MJ, Vaquero J, Macias RI, Cassio D, Marin JJ (2012) Characterization of the role of ABCG2 as a bile acid transporter in liver and placenta. Mol Pharmacol 81:273–283

    Article  PubMed  CAS  Google Scholar 

  6. Monte MJ, Rodriguez-Bravo T, Macias RI, Bravo P, el-Mir MY, Serrano MA, Lopez-Salva A, Marin JJ (1995) Relationship between bile acid transplacental gradients and transport across the fetal-facing plasma membrane of the human trophoblast. Pediatr Res 38:156–163

    Article  PubMed  CAS  Google Scholar 

  7. Monte MJ, Morales AI, Arevalo M, Alvaro I, Macias RI, Marin JJ (1996) Reversible impairment of neonatal hepatobiliary function by maternal cholestasis. Hepatology 23:1208–1217

    Article  PubMed  CAS  Google Scholar 

  8. Perez MJ, Macias RI, Duran C, Monte MJ, Gonzalez-Buitrago JM, Marin JJ (2005) Oxidative stress and apoptosis in fetal rat liver induced by maternal cholestasis. Protective effect of ursodeoxycholic acid. J Hepatol 43:324–332

    Article  PubMed  CAS  Google Scholar 

  9. Perez MJ, Macias RI, Marin JJ (2006) Maternal cholestasis induces placental oxidative stress and apoptosis. Protective effect of ursodeoxycholic acid. Placenta 27:34–41

    Article  PubMed  CAS  Google Scholar 

  10. Billington D, Evans CE, Godfrey PP, Coleman R (1980) Effects of bile salts on the plasma membranes of isolated rat hepatocytes. Biochem J 188:321–327

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Ljubuncic P, Fuhrman B, Oiknine J, Aviram M, Bomzon A (1996) Effect of deoxycholic acid and ursodeoxycholic acid on lipid peroxidation in cultured macrophages. Gut 39:475–478

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Sokol RJ, Straka MS, Dahl R, Devereaux MW, Yerushalmi B, Gumpricht E, Elkins N, Everson G (2001) Role of oxidant stress in the permeability transition induced in rat hepatic mitochondria by hydrophobic bile acids. Pediatr Res 49:519–531

    Article  PubMed  CAS  Google Scholar 

  13. Kostopanagiotou G, Routsi C, Smyrniotis V, Lekka ME, Kitsiouli E, Arkadopoulos N, Nakos G (2003) Alterations in bronchoalveolar lavage fluid during ischemia-induced acute hepatic failure in the pig. Hepatology 37:1130–1138

    Article  PubMed  CAS  Google Scholar 

  14. Kaneko T, Sato T, Katsuya H, Miyauchi Y (1990) Surfactant therapy for pulmonary edema due to intratracheally injected bile acid. Crit Care Med 18:77–83

    Article  PubMed  CAS  Google Scholar 

  15. Zecca E, De Luca D, Baroni S, Vento G, Tiberi E, Romagnoli C (2008) Bile acid-induced lung injury in newborn infants: a bronchoalveolar lavage fluid study. Pediatrics 121:e146–e149

    Article  PubMed  Google Scholar 

  16. De Luca D, Minucci A, Zecca E, Piastra M, Pietrini D, Carnielli VP, Zuppi C, Tridente A, Conti G, Capoluongo ED (2009) Bile acids cause secretory phospholipase A2 activity enhancement, revertible by exogenous surfactant administration. Intensive Care Med 35:321–326

    Article  PubMed  CAS  Google Scholar 

  17. Serrano MA, Macias RI, Vallejo M, Briz O, Bravo A, Pascual MJ, St-Pierre MV, Stieger B, Meier PJ, Marin JJ (2003) Effect of ursodeoxycholic acid on the impairment induced by maternal cholestasis in the rat placenta–maternal liver tandem excretory pathway. J Pharmacol Exp Ther 305:515–524

    Article  PubMed  CAS  Google Scholar 

  18. Keitel V, Donner M, Winandy S, Kubitz R, Haussinger D (2008) Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun 372:78–84

    Article  PubMed  CAS  Google Scholar 

  19. Macias RI, Pascual MJ, Bravo A, Alcalde MP, Larena MG, St-Pierre MV, Serrano MA, Marin JJ (2000) Effect of maternal cholestasis on bile acid transfer across the rat placenta–maternal liver tandem. Hepatology 31:975–983

    Article  PubMed  CAS  Google Scholar 

  20. Markwell MA, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  PubMed  CAS  Google Scholar 

  21. Bhatia M, Saluja AK, Hofbauer B, Lee HS, Frossard JL, Steer ML (1998) The effects of neutrophil depletion on a completely noninvasive model of acute pancreatitis-associated lung injury. Int J Pancreatol 24:77–83

    PubMed  CAS  Google Scholar 

  22. Crowl RM, Stoller TJ, Conroy RR, Stoner CR (1991) Induction of phospholipase A2 gene expression in human hepatoma cells by mediators of the acute phase response. J Biol Chem 266:2647–2651

    PubMed  CAS  Google Scholar 

  23. Zecca E, De Luca D, Marras M, Caruso A, Bernardini T, Romagnoli C (2006) Intrahepatic cholestasis of pregnancy and neonatal respiratory distress syndrome. Pediatrics 117:1669–1672

    Article  PubMed  Google Scholar 

  24. Zecca E, De Luca D, Barbato G, Marras M, Tiberi E, Romagnoli C (2008) Predicting respiratory distress syndrome in neonates from mothers with intrahepatic cholestasis of pregnancy. Early Hum Dev 84:337–341

    Article  PubMed  CAS  Google Scholar 

  25. Stahlman MT, Besnard V, Wert SE, Weaver TE, Dingle S, Xu Y, von Zychlin K, Olson SJ, Whitsett JA (2007) Expression of ABCA3 in developing lung and other tissues. J Histochem Cytochem 55:71–83

    Article  PubMed  CAS  Google Scholar 

  26. Thenappan T, Goel A, Marsboom G, Fang YH, Toth PT, Zhang HJ, Kajimoto H, Hong Z, Paul J, Wietholt C et al (2011) A central role for CD68(+) macrophages in hepatopulmonary syndrome. Reversal by macrophage depletion. Am J Respir Crit Care Med 183:1080–1091

    Article  PubMed Central  PubMed  Google Scholar 

  27. Attalah HL, Wu Y, Alaoui-El-Azher M, Thouron F, Koumanov K, Wolf C, Brochard L, Harf A, Delclaux C, Touqui L (2003) Induction of type-IIA secretory phospholipase A2 in animal models of acute lung injury. Eur Respir J 21:1040–1045

    Article  PubMed  CAS  Google Scholar 

  28. Salas MA, Evans SW, Levell MJ, Whicher JT (1990) Interleukin-6 and ACTH act synergistically to stimulate the release of corticosterone from adrenal gland cells. Clin Exp Immunol 79:470–473

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Rivera-Huizar S, Rincon-Sanchez AR, Covarrubias-Pinedo A, Islas-Carbajal MC, Gabriel-Ortiz G, Pedraza-Chaverri J, Alvarez-Rodriguez A, Meza-Garcia E, Armendariz-Borunda J (2006) Renal dysfunction as a consequence of acute liver damage by bile duct ligation in cirrhotic rats. Exp Toxicol Pathol 58:185–195

    Article  PubMed  CAS  Google Scholar 

  30. Hallstrand TS, Chi EY, Singer AG, Gelb MH, Henderson WR Jr (2007) Secreted phospholipase A2 group X overexpression in asthma and bronchial hyperresponsiveness. Am J Respir Crit Care Med 176:1072–1078

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. De Luca D, Minucci A, Tripodi D, Piastra M, Pietrini D, Zuppi C, Conti G, Carnielli VP, Capoluongo E (2011) Role of distinct phospholipases A2 and their modulators in meconium aspiration syndrome in human neonates. Intensive Care Med 37:1158–1165

    Article  PubMed  CAS  Google Scholar 

  32. Nakos G, Kitsiouli E, Hatzidaki E, Koulouras V, Touqui L, Lekka ME (2005) Phospholipases A2 and platelet-activating-factor acetylhydrolase in patients with acute respiratory distress syndrome. Crit Care Med 33:772–779

    Article  PubMed  CAS  Google Scholar 

  33. De Luca D, Minucci A, Cogo P, Capoluongo ED, Conti G, Pietrini D, Carnielli VP, Piastra M (2011) Secretory phospholipase A(2) pathway during pediatric acute respiratory distress syndrome: a preliminary study. Pediatr Crit Care Med 12:e20–e24

    Article  PubMed  Google Scholar 

  34. Touqui L, Wu YZ (2003) Interaction of secreted phospholipase A2 and pulmonary surfactant and its pathophysiological relevance in acute respiratory distress syndrome. Acta Pharmacol Sin 24:1292–1296

    PubMed  CAS  Google Scholar 

  35. Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y et al (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278:9435–9440

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank N. Skinner for revision of the English text in the manuscript. This study was supported by the Spanish “Instituto de Salud Carlos III” (Grant FIS PI11/00337), “Ministerio de Ciencia e Innovación” (Grant SAF2010-15517), “Junta de Castilla y León” (Grants SAN673SA07/08, SA070A11-2, SA023A11-2, BIO/03/SA23/11, BIO/SA64/13, BIO/SA65/13 and SA015U13), and “Fundación Investigación Mutua Madrileña” (Call 2009). The group belongs to the Spanish Network for Cooperative Research on membrane Transport Proteins (REIT) and CIBERehd. E.L. was supported by a PhD grant from the “Fondo Social Europeo/Junta de Castilla y León”.

Disclosure Statement

The authors declare that they do not have anything to disclose regarding funding or conflict of interest with respect to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose J. G. Marin or Rocio I. R. Macias.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 216 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herraez, E., Lozano, E., Poli, E. et al. Role of macrophages in bile acid-induced inflammatory response of fetal lung during maternal cholestasis. J Mol Med 92, 359–372 (2014). https://doi.org/10.1007/s00109-013-1106-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1106-1

Keywords

Navigation