Skip to main content
Log in

Role of distinct phospholipases A2 and their modulators in meconium aspiration syndrome in human neonates

  • Pediatric Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Meconium aspiration syndrome (MAS) is a life-threatening neonatal lung injury, whose pathophysiology has been mainly studied in animal models. In such models, pancreatic secretory phospholipase A2 (sPLA2-IB) and proinflammatory cytokines present in meconium challenge the lungs, catabolising surfactant and harming the alveoli. Locally produced phospholipases might perpetuate the injury and influence clinical pictures and therapeutic approaches. Our aim is to verify whether pulmonary phospholipase A2 (sPLA2-IIA) is involved in the damage and to determine if phospholipases and their modulators are associated with MAS clinical pictures.

Methods

We studied distinct phospholipases A2 and their modulators in broncho-alveolar lavage (BAL) fluids and in meconium of five MAS neonates and in five control neonates ventilated for extrapulmonary reasons.

Results

MAS patients have higher amounts of pulmonary phospholipase (sPLA2-IIA; P = 0.016) and Clara cell secretory protein (CCSP; P = 0.032). The local production of such proteins by the lung is confirmed by their very low levels in meconium. sPLA2-IIA contributes to the higher total enzyme activity in MAS patients, as compared to controls (P = 0.008). Cytosolic phospholipase was not detected in meconium or alveolar fluid. sPLA2 activity and sPLA2-IIA concentrations are correlated with the TNFα and with the release of CCSP. sPLA2 total activity, sPLA2-IIA and TNFα concentrations in BAL fluids correlate with the oxygenation impairment and haemorrhagic lung oedema.

Conclusions

Pulmonary sPLA2 is locally produced and contributes to the total sPLA2 activity during MAS. CCSP is also produced in trying to lower the inflammation. Both sPLA2 activity and sPLA2-IIA are significantly correlated with oxygenation impairment and haemorrhagic lung oedema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. van Yerland Y, de Beaufort AJ (2009) Why does meconium cause meconium aspiration syndrome? Current concepts of MAS pathophysiology. Early Hum Dev 85:617–620

    Article  Google Scholar 

  2. Berdeli A, Akisu M, Dagci T, Akisu C, Yalaz M, Kultursay N (2004) Meconium enhances platelet-activating factor and tumor necrosis factor production by rat alveolar macrophages. Prostaglandins Leukot Essent Fatty Acids 71:227–232

    Article  PubMed  CAS  Google Scholar 

  3. de Beaufort AJ, Bakker AC, van Tol MJD, Poorthuis BJ, Schrama AJ, Berger HM (2003) Meconium is a source of pro-inflammatory substances and can induce cytokine production in cultured A549 epithelial cells. Pediatr Res 54:491–495

    Article  PubMed  Google Scholar 

  4. Zagariya A, Bhat R, Uhal B, Navale S, Freidine M, Vidyasagar D (2000) Cell death and lung cell histology in meconium aspirated newborn rabbit lungs. Eur J Pediatr 159:819–826

    Article  PubMed  CAS  Google Scholar 

  5. Hurley BP, McCormick BA (2008) Multiple roles of phospholipase A2 during lung infection and inflammation. Infect Immun 76:2259–2272

    Article  PubMed  CAS  Google Scholar 

  6. Granata F, Petraroli A, Boilard E, Bezzine S, Bollinger J, Del Vecchio L, Gelb MH, Lambeau G, Marone G, Triggiani M (2005) Activation of cytokine production by secreted phospholipase A2 in human lung macrophages expressing the M-type receptor. J Immunol 174:464–474

    PubMed  CAS  Google Scholar 

  7. Niewoehner DE, Rice K, Duane P, Sinha AA, Gebhard R, Wangensteen D (1989) Induction of alveolar epithelial injury by phospholipase A2. J Appl Physiol 66:261–267

    PubMed  CAS  Google Scholar 

  8. Sommers CD, Bovvitt JL, Bemis KG, Snyder DW (1992) Porcine pancreatic phospholipase A2-induced contractions of guinea pig lung pleural strips. Eur J Pharmacol 216:87–96

    Article  PubMed  CAS  Google Scholar 

  9. Duncan Hite R, Seeds MC, Safta AM, Jacinto RB, Gyves JL, Bass DA, Waite BM (2005) Lysophospholipid generation and phosphatidylglycerol depletion in phospholipase A2-mediated surfactant dysfunction. Am J Physiol Lung Cell Mol Physiol 288:L618–L624

    Article  PubMed  Google Scholar 

  10. Kitsiouli E, Nakos G, Lekka ME (2009) Phospholipase A2 subclasses in acute respiratory distress syndrome. Biochim Biophys Acta 1792:941–953

    PubMed  CAS  Google Scholar 

  11. De Luca D, Baroni S, Vento G, Piastra M, Pietrini D, Romitelli F, Capoluongo E, Romagnoli C, Conti G, Zecca E (2008) Secretory phospholipase A2 and neonatal respiratory distress: pilot study on broncho-alveolar lavage. Intensive Care Med 34:1858–1864

    Article  PubMed  Google Scholar 

  12. De Luca D, Minucci A, Cogo P, Capoluongo ED, Conti G, Pietrini D, Carnielli VP, Piastra M (2011) Secretory phospholipase A2 pathway during pediatric acute respiratory distress syndrome: a preliminary study. Pediatr Crit Care Med 12:e20–e24

    Google Scholar 

  13. Kaapa P, Soukka A (2008) Phospholipase A2 in meconium-induced lung injury. J Perinatol 28:S120–S122

    Article  PubMed  CAS  Google Scholar 

  14. De Luca D, Minucci A, Zecca E, Piastra M, Pietrini D, Carnielli VP, Zuppi C, Tridente A, Conti G, Capoluongo ED (2009) Bile acids cause secretory phospholipase A2 activity enhancement, revertible by exogenous surfactant administration. Intensive Care Med 35:321–326

    Article  PubMed  Google Scholar 

  15. Magrioti V, Kokotos G (2010) Phospholipase A2 inhibitors as potential therapeutic agents for the treatment of inflammatory diseases. Expert Opin Ther Patents 20:1–18

    Article  CAS  Google Scholar 

  16. Pilon AL (2000) Rationale for the development of recombinant human CC10 as a therapeutic for inflammatory and fibrotic disease. Ann N Y Acad Sci 923:280–299

    Article  PubMed  CAS  Google Scholar 

  17. Dargaville PA, Copnell B, Australian and New Zealand Neonatal Network (2006) The epidemiology of meconium aspiration syndrome: incidence, risk factors, therapies, and outcome. Pediatrics 117:1712–1721

    Article  PubMed  Google Scholar 

  18. American Heart Association, American Academy of Pediatrics (2006) 2005 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care of pediatric and neonatal patients: neonatal resuscitation guidelines. Pediatrics 117:1029–1038

    Article  Google Scholar 

  19. European Respiratory Society Task Force on bronchoalveolar lavage in children (2000) Bronchoalveolar lavage in children. Eur Respir J 15:217–231

    Article  Google Scholar 

  20. Dargaville PA, Sought M, McDougall PN (1999) Comparison of two methods of diagnostic lung lavage in ventilated infants with lung disease. Am J Resp Crit Care Med 160:771–777

    PubMed  CAS  Google Scholar 

  21. Berdat P, Wehrle TJ, Küng A, Achermann F, Sutter M, Carrel TP, Nydegger UE (2003) Age-specific analysis of normal cytokine levels in healthy infants. Clin Chem Lab Med 4:1335–1339

    Article  Google Scholar 

  22. Coppens JT, Van Winkle LS, Pinkerton KE, Plopper CG (2007) Distribution of Clara cell secretory protein expression in the tracheobronchial airways of rhesus monkeys. Am J Physiol Lung Cell Mol Physiol 292:1155–1162

    Article  Google Scholar 

  23. Reynolds LJ, Hughes LL, Dennis EA (1992) Analysis of human synovial fluid phospholipase A2 on short chain phosphatidylcholine-mixed micelles: development of a spectrophotometric assay suitable for a microtiter plate reader. Anal Biochem 204:190–197

    Article  PubMed  CAS  Google Scholar 

  24. Reynolds LJ, Hughes LL, Yu L, Dennis EA (1994) 1-Hexadecyl-2-arachidonoylthio-2-deoxy-sn-glycero-3-phosphorylcholine as a substrate for the microtiterplate assay of human cytosolic phospholipase A2. Anal Biochem 217:25–32

    Article  PubMed  CAS  Google Scholar 

  25. Capoluongo E, Ameglio F, Lulli P, Minucci A, Santonocito C, Concolino P, Di Stasio E, Boccacci S, Vendettuoli V, Giuratrabocchetta G, De Cunto A, Tana M, Romagnoli C, Zuppi C, Vento G (2007) Epithelial lining fluid free IGF-I-to-PAPP-A ratio is associated with bronchopulmonary dysplasia in preterm infants. Am J Physiol Endocrinol Metab 292:E308–E313

    Article  PubMed  CAS  Google Scholar 

  26. Broeckaert F, Clippe A, Knoops B, Hermans C, Bernard A (2000) Clara cell secretory protein (CC16): features as a peripheral lung biomarker. Ann N Y Acad Sci 923:68–77

    Article  PubMed  CAS  Google Scholar 

  27. Angert RM, Pilon AL, Chester D, Davis JM (2007) CC10 reduces inflammation in meconium aspiration syndrome in newborn piglets. Pediatr Res 62:684–688

    Article  PubMed  CAS  Google Scholar 

  28. Wu YZ, Medjane S, Chabot S, Kubrusly FS, Raw I, Chignard M, Touqui L (2003) Surfactant-protein A and phosphatidylglycerol suppress type IIA phospholipase A2 synthesis via nuclear factor-κB. Am J Resp Crit Care Med 168:692–699

    Article  PubMed  Google Scholar 

  29. Dargaville PA, South M, McDougall PN (2001) Surfactant and surfactant inhibitors in meconium aspiration syndrome. J Pediatr 138:113–115

    Article  PubMed  CAS  Google Scholar 

  30. Wright JR (2005) Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 5:58–68

    Article  PubMed  CAS  Google Scholar 

  31. Berger A, Havet N, Vial D, Arbibe L, Dumarey C, Watson ML, Touqui L (1999) Dioleylphosphatidylglycerol inhibits the expression of type II-phospholipase A2 in macrophages. Am J Resp Crit Care Med 159:613–618

    PubMed  CAS  Google Scholar 

  32. de Beaufort AJ, Pelikan DMV, Elferink JGR, Berger HM (1998) Effect of interleukin 8 in meconium on in vitro neutrophil chemotaxis. Lancet 352:102–105

    PubMed  Google Scholar 

  33. Bolognese B, McCord M, Marshall LA (1995) Differential regulation of elicited-peritoneal macrophage 14 kDa and 85 kDa phospholipase A2(s) by transforming growth factor-beta. Biochim Biophys Acta 1256:201–209

    PubMed  Google Scholar 

  34. Korhonen K, Soukka H, Halkola L, Peuravuori H, Aho H, Pulkki K, Kero P, Kaapa PO (2003) Meconium induces only localised inflammatory lung injury in piglets. Pediatr Res 54:192–197

    Article  PubMed  CAS  Google Scholar 

  35. Vidyasagar D, Bhat R, Uhal B, Navale S, Zagariya A (1999) TNFα, IL1β, IL6, IL8, IFNγ, PGE2 and IL10 expression in meconium aspirated newborn lungs. Pediatr Res 45:325A

    Google Scholar 

  36. Sippola T, Aho H, Peuravuori H, Lukkarinen H, Gunn J, Kaapa P (2006) Pancreatic phospholipase A2 contributes to lung injury in experimental meconium aspiration. Pediatr Res 59:641–645

    Article  PubMed  CAS  Google Scholar 

  37. Simpson CM, Smolich JJ, Shekerdemian LS, Penny DJ (2010) Urotensin-II contributes to pulmonary vasoconstriction in a perinatal model of persistent pulmonary hypertension of the newborn secondary to meconium aspiration syndrome. Pediatr Res 67:150–157

    Article  PubMed  CAS  Google Scholar 

  38. Nakos G, Kitsiouli E, Hatzidaki E, Koulouras V, Touqui L, Lekka ME (2005) Phospholipase A2 and platelet-activating-factor acetylhydrolase in patients with acute respiratory distress syndrome. Crit Care Med 33:772–779

    Article  PubMed  CAS  Google Scholar 

  39. Ivanov VA, Gewolb IH, Uhal BD (2010) A new look at the pathogenesis of the meconium aspiration syndrome: a role for fetal pancreatic proteolytic enzymes in epithelial cell detachment. Pediatr Res 68:221–224

    Article  PubMed  CAS  Google Scholar 

  40. Durham SK, Selig WM (1990) Phospholipase A2-induced pathophysiologic changes in the guinea pig lung. Am J Pathol 136:1283–1291

    PubMed  CAS  Google Scholar 

  41. Okazaki K, Kondo M, Kato M, Kakinuma R, Nishida A, Noda M, Tanigushi K, Kimura H (2008) Serum cytokine and chemokine profiles in neonates with meconium aspiration syndrome. Pediatrics 121:e748–e753

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Joaquim Trias (PhD) and Chiara Campana (MD) for the critical review of manuscript and English style. They also thank Michal Karpisek (PhD) for his collaboration in the cross-reactivity test and for kindly providing human recombinant sPLA2-IIA. This study was funded by QProgetti Ltd (Roma, Italy; grant 1-2/2010) and NeoSal Foundation (Ancona, Italy). These institutions financed the research as charity programs and had no role either in the project or in the development of the study and data management.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele De Luca.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Luca, D., Minucci, A., Tripodi, D. et al. Role of distinct phospholipases A2 and their modulators in meconium aspiration syndrome in human neonates. Intensive Care Med 37, 1158–1165 (2011). https://doi.org/10.1007/s00134-011-2243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-011-2243-z

Keywords

Navigation