Skip to main content
Log in

Siderophore-mediated iron trafficking in humans is regulated by iron

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Siderophores are best known as small iron binding molecules that facilitate microbial iron transport. In our previous study we identified a siderophore-like molecule in mammalian cells and found that its biogenesis is evolutionarily conserved. A member of the short chain dehydrogenase family of reductases, 3-hydroxy butyrate dehydrogenase (BDH2) catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore. We have shown that depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of cellular iron and mitochondrial iron deficiency. These observations suggest that the mammalian siderophore is a critical regulator of cellular iron homeostasis and facilitates mitochondrial iron import. By utilizing bioinformatics, we identified an iron-responsive element (IRE; a stem-loop structure that regulates genes expression post-transcriptionally upon binding to iron regulatory proteins or IRPs) in the 3′-untranslated region of the human BDH2 (hBDH2) gene. In cultured cells as well as in patient samples we now demonstrate that the IRE confers iron-dependent regulation on hBDH2 and binds IRPs in RNA electrophoretic mobility shift assays. In addition, we show that the hBDH2 IRE associates with IRPs in cells and that abrogation of IRPs by RNAi eliminates the iron-dependent regulation of hBDH2 mRNA. The key physiologic implication is that iron-mediated post-transcriptional regulation of hBDH2 controls mitochondrial iron homeostasis in human cells. These observations provide a new and an unanticipated mechanism by which iron regulates its intracellular trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48:743–772

    Article  PubMed  CAS  Google Scholar 

  2. Nielands JB (1995) Siderophores: structure and functions of microbial iron transport compounds. J Biol Chem 27:26723–26726

    Google Scholar 

  3. Kakhlon O, Cabantchik ZI (2002) The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med 33:1037–1046

    Article  PubMed  CAS  Google Scholar 

  4. Kruszewski M (2003) Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res 531:81–92

    Article  PubMed  CAS  Google Scholar 

  5. Fernandez-Pol JA (1977) Isolation and characterization of a siderophore-like growth factor from mutants of SV40-transformed cells adapted to picolinic acid. Cell 14:489–499

    Article  Google Scholar 

  6. Jones R, Peterson C, Grady R, Cerami A (1980) Low molecular weight iron-binding factor from mammalian tissue that potentiates bacterial growth. J Exp Med 151:418–428

    Article  PubMed  CAS  Google Scholar 

  7. Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 100:3584–3588

    Article  PubMed  CAS  Google Scholar 

  8. Devireddy LR, Hart DO, Goetz DH, Green MR (2010) A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 141:1006–1017

    Article  PubMed  CAS  Google Scholar 

  9. Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20:627–662

    Article  PubMed  CAS  Google Scholar 

  10. Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of mammalian iron metabolism. Cell 142:24–38

    Article  PubMed  CAS  Google Scholar 

  11. Muckenthaler MU, Galy B, Hentze MW (2008) Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 28:197–213

    Article  PubMed  CAS  Google Scholar 

  12. Sanchez M, Galy B, Muckenthaler MU, Hentze MW (2007) Iron-regulatory proteins limit hypoxia-inducible factor-2alpha expression in iron deficiency. Nat Struct Mol Biol 14:420–426

    Article  PubMed  CAS  Google Scholar 

  13. Wallander ML, Leibold EA, Eisenstein RS (2006) Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim Biophys Acta 1763:668–689

    Article  PubMed  CAS  Google Scholar 

  14. Binder R et al (1994) Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3′ UTR and does not involve poly(A) tail shortening. EMBO J 13:1969–1980

    PubMed  CAS  Google Scholar 

  15. Piccinelli P, Samuelsson T (2007) Evolution of the iron-responsive element. RNA 13:952–966

    Article  PubMed  CAS  Google Scholar 

  16. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414

    Article  PubMed  CAS  Google Scholar 

  17. Beaumont C (1995) Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract. Nat Genet 11:444–446

    Article  PubMed  CAS  Google Scholar 

  18. Kato J et al (2001) A mutation, in the iron-responsive element of H ferritin mRNA, causing autosomal dominant iron overload. Am J Hum Genet 69:191–197

    Article  PubMed  CAS  Google Scholar 

  19. Rogers JT et al (2002) An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277:45518–45528

    Article  PubMed  CAS  Google Scholar 

  20. Cmejla R, Petrak J, Cmejlova J (2006) A novel iron-responsive element in the 3′UTR of human MRCKalpha. Biochem Biophys Res Commun 341:158–166

    Article  PubMed  CAS  Google Scholar 

  21. Sanchez M et al (2006) Iron regulation and the cell cycle. Identification of an iron-responsive element in the 3′-untranslated region of human cell division cycle 14 mRNA by a refined microarray-based screening strategy. J Biol Chem 281:22865–22874

    Article  PubMed  CAS  Google Scholar 

  22. Meehan HA, Connell GJ (2001) The hairpin loop but not the bulged C of the iron responsive element is essential for high affinity binding to iron regulatory protein-1. J Biol Chem 276:14791–14796

    Article  PubMed  CAS  Google Scholar 

  23. Sierzputowska-Gracz H, McKenzie RA, Theil LC (1995) The importance of single G in the hairpin loop of the iron responsive element (IRE) in ferritin mRNA for structure: an NMR spectroscopy study. Nucleic Acids Res 23:146–153

    Article  PubMed  CAS  Google Scholar 

  24. dos Santos CO et al (2008) An iron responsive element-like stem-loop regulates a-hemoglobin-stabilizing protein mRNA. J Biol Chem 283:26956–26964

    Article  PubMed  Google Scholar 

  25. Butt J et al (1996) Differences in the RNA binding sites of iron regulatory proteins and potential target diversity. Proc Natl Acad Sci USA 93:4345–4349

    Article  PubMed  CAS  Google Scholar 

  26. Barton H, Eisenstein RS, Bomford A, Munro H (1990) Determinants of the interaction between the iron-responsive element-binding protein and its binding site in rat L-ferritin mRNA. J Biol Chem 265:7000–7008

    PubMed  CAS  Google Scholar 

  27. Henderson BR, Menotti E, Bonnard C, Kuhn LC (1994) Optimal sequence and structure of iron-responsive elements. J Biol Chem 269:17481–17489

    PubMed  CAS  Google Scholar 

  28. Feder JN et al (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408

    Article  PubMed  CAS  Google Scholar 

  29. Napier I, Ponka P, Richardson DR (2005) Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood 105:1867–1874

    Article  PubMed  CAS  Google Scholar 

  30. Richardson DR et al (2010) Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci USA 107:10775–10782

    Article  PubMed  CAS  Google Scholar 

  31. Campillos M, Cases I, Hentze M, Sanchez M (2010) SIREs: searching for iron-responsive elements. Nucleic Acids Res 2010:1–8

    Google Scholar 

  32. Casey JL et al (1988) Iron responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science 240:924–928

    Article  PubMed  CAS  Google Scholar 

  33. Hanson ES, Foot LM, Leibold EA (1999) Hypoxia post-translationally activates iron-regulatory protein 2. J Biol Chem 274:5047–5052

    Article  PubMed  CAS  Google Scholar 

  34. Sanchez M, Galy B, Hentze M, Muckenthaler MU (2007) Identification of target mRNAs of regulatory RNA binding proteins using mRNP immunopurification and microarrays. Nat Protoc 2:2033–2042

    Article  PubMed  CAS  Google Scholar 

  35. Zumbrennen KB, Wallander ML, Romney SJ, Leibold EA (2009) Cysteine oxidation regulates the RNA-binding activity of iron regulatory protein 2. Mol Cell Biol 29:2219–2229

    Article  PubMed  CAS  Google Scholar 

  36. Li X-L, Andersen JB, Ezelle HJ, Wilson GM, Hassel BA (2007) Post-transcriptional regulation of RNAse-L expression is mediated by the 3′-untranslated region of its mRNA. J Biol Chem 282:7950–7960

    Article  PubMed  CAS  Google Scholar 

  37. Rauen U et al (2007) Assessment of chelatable mitochondrial iron by using mitochondrion-selective fluorescent iron indicators with different iron-binding affinities. Chembiochem 8:341–352

    Article  PubMed  CAS  Google Scholar 

  38. Tampanaru-Sarmeslu A et al (1998) Transferrin and transferrin receptor in human hypophysis and pituitary adenomas. Am J Pathol 152:413–422

    Google Scholar 

  39. Hagist S et al (2008) In vitro-targeted gene identification in patients with hepatitis C using a genome-wide microarray technology. Hepatolology 49:378–386

    Article  Google Scholar 

Download references

Acknowledgments

We thank Elizabeth Leibold, Matthias Hentze, Kostas Pantopoulos, and Susy Torti for providing reagents, Gretta Jacobs for human hemochromatosis liver sections, Joe Willis for normal human liver sections, Sebastian Mueller for providing RNA samples of normal and hemochromatosis liver, Robert Lanford for providing transformed liver cells of human and apes, and Alan Tartakoff for editorial assistance. This work is supported by K01CA113838, R01DK081395, and Case Western Reserve University start up funds to L.R.D and by PS09/00341 from Spanish Health Program (Instituto de Salud Carlos III) and RYC-2008-02352 research contract (Spanish Ministry of Science and Innovation) to M.S. L.R.D. is also a recipient of career developmental awards from March of Dimes and American Society of Hematology.

Disclosure of potential conflict of interests

The authors declare no conflict of interests related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Devireddy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2050 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Lanford, R., Mueller, S. et al. Siderophore-mediated iron trafficking in humans is regulated by iron. J Mol Med 90, 1209–1221 (2012). https://doi.org/10.1007/s00109-012-0899-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0899-7

Keywords

Navigation