Skip to main content
Log in

Proteomic identification of RhoA as a potential biomarker for proliferation and metastasis in hepatocellular carcinoma

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world, and there is an urgent need to discover novel factors that can act as biomarkers for prognostic assessment and therapeutic targets of HCC. In this study, highly purified plasma membrane proteins from clinical tissue samples were obtained using a strategy combining sucrose density gradient centrifugation and subsequent phase partition. Using a two-dimensional gel electrophoresis and MALDI-Q-TOF MS/MS-based proteomics approach, we identified 13 plasma membrane-associated proteins that were differentially expressed in HCC and normal liver tissues. Of those, RhoA was one of the most significantly upregulated proteins in HCC, and its overexpression was confirmed using Western blotting. Immunohistochemistry suggested a link between RhoA expression and poor differentiation and clinicopathologic stage. Suppression of RhoA expression in HepG2 and Hep3B cells by RNA interference led to significant inhibition of cell growth, induction of apoptosis, and a decrease in migration. Our data suggest that RhoA may serve as a potential biomarker and an attractive therapeutic target for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. El-Serag HB, Mason AC (1999) Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 340:745–750

    Article  PubMed  CAS  Google Scholar 

  2. Skolnick AA (1996) Armed with epidemiologic research, China launches programs to prevent liver cancer. J Am Med Assoc 276:1458–1459

    Article  CAS  Google Scholar 

  3. Levin B, Amos C (1995) Therapy of unresectable hepatocellular carcinoma. N Engl J Med 332:1294–1296

    Article  PubMed  CAS  Google Scholar 

  4. Bruix J, Llovet JM (2002) Prognostic prediction and treatment strategy in hepatocellular carcinoma. Hepatology 35:519–524

    Article  PubMed  Google Scholar 

  5. Kim KR, Moon HE, Kim KW (2002) Hypoxia-induced angiogenesis in human hepatocellular carcinoma. J Mol Med 80:703–714

    Article  PubMed  CAS  Google Scholar 

  6. Aravalli RN, Steer CJ, Cressman EN (2008) Molecular mechanisms of hepatocellular carcinoma. Hepatology 48:2047–2063

    Article  PubMed  CAS  Google Scholar 

  7. Branda M, Wands JR (2006) Signal transduction cascades and hepatitis B and C related hepatocellular carcinoma. Hepatology 43:891–902

    Article  PubMed  CAS  Google Scholar 

  8. Sutton A, Nahon P, Pessayre D, Rufat P, Poiré A, Ziol M, Vidaud D, Barget N, Ganne-Carrié N, Charnaux N et al (2006) Genetic polymorphisms in antioxidant enzymes modulate hepatic iron accumulation and hepatocellular carcinoma development in patients with alcohol-induced cirrhosis. Cancer Res 66:2844–2852

    Article  PubMed  CAS  Google Scholar 

  9. Du XL, Hu H, Lin DC, Xia SH, Shen XM, Zhang Y, Luo ML, Feng YB, Cai Y, Xu X et al (2007) Proteomic profiling of proteins dysregulated in Chinese esophageal squamous cell carcinoma. J Mol Med 85:863–875

    Article  PubMed  CAS  Google Scholar 

  10. Cravatt BF, Simon GM, Yates JR 3rd (2007) The biological impact of mass-spectrometry-based proteomics. Nature 450:991–1000

    Article  PubMed  CAS  Google Scholar 

  11. Kondo T, Hirohashi S (2006) Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics. Nat Protoc 1:2940–2956

    Article  PubMed  CAS  Google Scholar 

  12. Shields DJ, Niessen S, Murphy EA, Mielgo A, Desgrosellier JS, Lau SK, Barnes LA, Lesperance J, Bouvet M, Tarin D et al (2010) RBBP9: a tumor-associated serine hydrolase activity required for pancreatic neoplasia. Proc Natl Acad Sci USA 107:2189–2194

    Article  PubMed  CAS  Google Scholar 

  13. Wang L, Zhu YF, Guo XJ, Huo R, Ma X, Lin M, Zhou ZM, Sha JH (2005) A two-dimensional electrophoresis reference map of human ovary. J Mol Med 83:812–821

    Article  PubMed  CAS  Google Scholar 

  14. Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B, Robinson WH, Baranzini SE et al (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451:1076–1081

    Article  PubMed  CAS  Google Scholar 

  15. Zhou J, Zhou T, Cao R, Liu Z, Shen J, Chen P, Wang X, Liang S (2006) Evaluation of the application of sodium deoxycholate to proteomic analysis of rat hippocampal plasma membrane. J Proteome Res 5:2547–2553

    Article  PubMed  CAS  Google Scholar 

  16. Jayanthi LD, Samuvel DJ, Ramamoorthy S (2004) Regulated internalization and phosphorylation of the native norepinephrine transporter in response to phorbol esters. Evidence for localization in lipid rafts and lipid raft-mediated internalization. J Biol Chem 279:19315–19326

    Article  PubMed  CAS  Google Scholar 

  17. Chignard N, Beretta L (2004) Proteomics for hepatocellular carcinoma marker discovery. Gastroenterology 127:S120–S125

    Article  PubMed  CAS  Google Scholar 

  18. Seow TK, Liang RC, Leow CK, Chung MC (2001) Hepatocellular carcinoma: from bedside to proteomics. Proteomics 1:1249–1263

    Article  PubMed  CAS  Google Scholar 

  19. Cao R, Li X, Liu Z, Peng X, Hu W, Wang X, Chen P, Xie J, Liang S (2006) Integration of a two-phase partition method into proteomics research on rat liver plasma membrane proteins. J Proteome Res 5:634–642

    Article  PubMed  CAS  Google Scholar 

  20. Norling B, Zak E, Andersson B, Pakrasi H (1998) 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 436:189–192

    Article  PubMed  CAS  Google Scholar 

  21. Peirce MJ, Wait R, Begum S, Saklatvala J, Cope AP (2004) Expression profiling of lymphocyte plasma membrane proteins. Mol Cell Proteomics 3:56–65

    PubMed  CAS  Google Scholar 

  22. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  23. Kreisberg JI, Malik SN, Prihoda TJ, Bedolla RG, Troyer DA, Kreisberg S, Ghosh PM (2004) Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res 64:5232–5236

    Article  PubMed  CAS  Google Scholar 

  24. Finlayson AE, Freeman KW (2009) A cell motility screen reveals role for MARCKS-related protein in adherens junction formation and tumorigenesis. PLoS One 4:e7833

    Article  PubMed  Google Scholar 

  25. Lajoie P, Goetz JG, Dennis JW, Nabi IR (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 185:381–385

    Article  PubMed  CAS  Google Scholar 

  26. Maxfield FR (2002) Plasma membrane microdomains. Curr Opin Cell Biol 14:483–487

    Article  PubMed  CAS  Google Scholar 

  27. McNiven MA, Thompson HM (2006) Vesicle formation at the plasma membrane and trans-Golgi network: the same but different. Science 313:1591–1594

    Article  PubMed  CAS  Google Scholar 

  28. Saraste J, Goud B (2007) Functional symmetry of endomembranes. Mol Biol Cell 18:1430–1436

    Article  PubMed  CAS  Google Scholar 

  29. Olson MF, Ashworth A, Hall A (1995) An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269:1270–1272

    Article  PubMed  CAS  Google Scholar 

  30. Wei Y, Zhang Y, Derewenda U, Liu X, Minor W, Nakamoto RK, Somlyo AV, Somlyo AP, Derewenda ZS (1997) Crystal structure of RhoA-GDP and its functional implications. Nat Struct Biol 4:699–703

    Article  PubMed  CAS  Google Scholar 

  31. Chan CH, Lee SW, Li CF, Wang J, Yang WL, Wu CY, Wu J, Nakayama KI, Kang HY, Huang HY et al (2010) Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat Cell Biol 12:457–467

    Article  PubMed  CAS  Google Scholar 

  32. Hoshino D, Tomari T, Nagano M, Koshikawa N, Seiki M (2009) A novel protein associated with membrane-type 1 matrix metalloproteinase binds p27(kip1) and regulates RhoA activation, actin remodeling, and matrigel invasion. J Biol Chem 284:27315–27326

    Article  PubMed  CAS  Google Scholar 

  33. Suzuki C, Daigo Y, Ishikawa N, Kato T, Hayama S, Ito T, Tsuchiya E, Nakamura Y (2005) ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Res 65:11314–11325

    Article  PubMed  CAS  Google Scholar 

  34. Zhao X, Lu L, Pokhriyal N, Ma H, Duan L, Lin S, Jafari N, Band H, Band V (2009) Overexpression of RhoA induces preneoplastic transformation of primary mammary epithelial cells. Cancer Res 69:483–491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30872742).

Disclosure of potential conflict of interests

The authors declare no conflict of interests related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinliang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gou, L., Wang, W., Tong, A. et al. Proteomic identification of RhoA as a potential biomarker for proliferation and metastasis in hepatocellular carcinoma. J Mol Med 89, 817–827 (2011). https://doi.org/10.1007/s00109-011-0753-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0753-3

Keywords

Navigation