Skip to main content

Advertisement

Log in

Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell carcinoma

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer death in China. In the present study, proteins in tumors and adjacent normal esophageal tissues from 41 patients with ESCC were extracted, and two-dimensional electrophoresis (2-DE) was performed using the pH 3–10 and 4–7 immobilized pH gradient strips. The protein spots expressed differentially between tumors and normal tissues were identified by matrix-assisted laser desorption/ionization and liquid chromatography electrospray/ionization ion trap mass spectrometry. A total of 22 proteins differentially expressed between ESCC and normal esophageal tissues were identified, in which 17 proteins were upregulated and 5 downregulated in tumors. Biological functions of these proteins are related to cell signal transduction, cell proliferation, cell motility, glycolysis, regulation of transcription, oxidative stress processes, and protein folding. Some of the proteins obtained were confirmed by Western blotting and immunohistochemical staining. We showed that high expression of calreticulin and 78-kDa glucose-regulated protein (GRP78) were correlated with poor prognosis by Kaplan–Meier analysis and log rank analysis. Zinc finger protein 410, annexin V, similar to the ubiquitin-conjugating enzyme E2 variant 1 isoform c, mutant hemoglobin beta chain, TPM4–ALK fusion oncoprotein type 2, similar to heat shock congnate 71-kDa protein, GRP78, and pyruvate kinase M2 (M2–PK) were for the first time observed to be dysregulated in human ESCC tissues. The proteins here identified will contribute to the understanding of the tumorigenesis and progression of Chinese ESCC and may potentially provide useful markers for diagnosis or targets for therapeutic intervention and drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Oka M, Yamamoto K, Takahashi M, Hakozaki M, Abe T, Iizuka N, Hazama S, Hirazawa K, Hayashi H, Tangoku A, Hirose K, Ishihara T, Suzuki T (1996) Relationship between serum levels of interleukin 6, various disease parameters and malnutrition in patients with esophageal squamous cell carcinoma. Cancer Res 56:2776–2780

    PubMed  CAS  Google Scholar 

  2. Kwong KF (2005) Molecular biology of esophageal cancer in the genomics era. Surg Clin North Am 85:539–553

    Article  PubMed  Google Scholar 

  3. Enzinger PC, Mayer RJ (2003) Esophageal cancer. N Engl J Med 349:2241–2252

    Article  PubMed  CAS  Google Scholar 

  4. Imazawa M, Hibi K, Fujitake S, Kodera Y, Ito K, Akiyama S, Nakao A (2005) S100A2 overexpression is frequently observed in esophageal squamous cell carcinoma. Anticancer Res 25:1247–1250

    PubMed  CAS  Google Scholar 

  5. Xiong XD, Xu LY, Shen ZY, Cai WJ, Luo JM, Han YL, Li EM (2002) Identification of differentially expressed proteins between human esophageal immortalized and carcinomatous cell lines by two-dimensional electrophoresis and MALDI–TOF-mass spectrometry. World J Gastroenterol 8:777–781

    PubMed  CAS  Google Scholar 

  6. Yoshitake Y, Nakatsura T, Monji M, Senju S, Matsuyoshi H, Tsukamoto H, Hosaka S, Komori H, Fukuma D, Ikuta Y, Katagiri T, Furukawa Y, Ito H, Shinohara M, Nakamura Y, Nishimura Y (2004) Proliferation potential-related protein, an ideal esophageal cancer antigen for immunotherapy, identified using complementary DNA microarray analysis. Clin Cancer Res 10:6437–6448

    Article  PubMed  CAS  Google Scholar 

  7. Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37(Suppl 4):S9–S15

    Article  PubMed  CAS  Google Scholar 

  8. Kavallaris M, Marshall GM (2005) Proteomics and disease: opportunities and challenges. Med J Aust 182:575–579

    PubMed  Google Scholar 

  9. Bae SM, Lee CH, Cho YL, Nam KH, Kim YW, Kim CK, Han BD, Lee YJ, Chun HJ, Ahn WS (2005) Two-dimensional gel analysis of protein expression profile in squamous cervical cancer patients. Gynecol Oncol 99:26–35

    Article  PubMed  CAS  Google Scholar 

  10. Lexander H, Palmberg C, Auer G, Hellstrom M, Franzen B, Jornvall H, Egevad L (2005) Proteomic analysis of protein expression in prostate cancer. Anal Quant Cytol Histol 27:263–272

    PubMed  Google Scholar 

  11. Hwa JS, Kim HJ, Goo BM, Park HJ, Kim CW, Chung KH, Park HC, Chang SH, Kim YW, Kim DR, Cho GJ, Choi WS, Kang KR (2006) The expression of ketohexokinase is diminished in human clear cell type of renal cell carcinoma. Proteomics 6:1077–1084

    Article  PubMed  CAS  Google Scholar 

  12. Tomlinson AJ, Hincapie M, Morris GE, Chicz RM (2002) Global proteome analysis of a human gastric carcinoma. Electrophoresis 23:3233–3240

    Article  PubMed  CAS  Google Scholar 

  13. Li C, Chen Z, Xiao Z, Wu X, Zhan X, Zhang X, Li M, Li J, Feng X, Liang S, Chen P, Xie JY (2003) Comparative proteomics analysis of human lung squamous carcinoma. Biochem Biophys Res Commun 309:253–260

    Article  PubMed  CAS  Google Scholar 

  14. Beranova-Giorgianni S, Desiderio DM (2000) Mass spectrometry of the human pituitary proteome: identification of selected proteins. Rapid Commun Mass Spectrom 14:161–167

    Article  PubMed  CAS  Google Scholar 

  15. Chang YS, Wu W, Walsh G, Hong WK, Mao L (2003) Enolase-alpha is frequently down-regulated in non-small cell lung cancer and predicts aggressive biological behavior. Clin Cancer Res 9:3641–3644

    PubMed  CAS  Google Scholar 

  16. Li C, Xiao Z, Chen Z, Zhang X, Li J, Wu X, Li X, Yi H, Li M, Zhu G, Liang S (2006) Proteome analysis of human lung squamous carcinoma. Proteomics 6:547–558

    Article  PubMed  CAS  Google Scholar 

  17. Takashima M, Kuramitsu Y, Yokoyama Y, Iizuka N, Fujimoto M, Nishisaka T, Okita K, Oka M, Nakamura K (2005) Overexpression of alpha enolase in hepatitis C virus-related hepatocellular carcinoma: association with tumor progression as determined by proteomic analysis. Proteomics 5:1686–1692

    Article  PubMed  CAS  Google Scholar 

  18. Wu W, Tang X, Hu W, Lotan R, Hong WK, Mao L (2002) Identification and validation of metastasis-associated proteins in head and neck cancer cell lines by two-dimensional electrophoresis and mass spectrometry. Clin Exp Metastasis 19:319–326

    Article  PubMed  CAS  Google Scholar 

  19. Qi Y, Chiu JF, Wang L, Kwong DL, He QY (2005) Comparative proteomic analysis of esophageal squamous cell carcinoma. Proteomics 5:2960–2971

    Article  PubMed  CAS  Google Scholar 

  20. Benanti JA, Williams DK, Robinson KL, Ozer HL, Galloway DA (2002) Induction of extracellular matrix-remodeling genes by the senescence-associated protein APA-1. Mol Cell Biol 22:7385–7397

    Article  PubMed  CAS  Google Scholar 

  21. Murray GI, Duncan ME, O’Neil P, Melvin WT, Fothergill JE (1996) Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat Med 2:461–462

    Article  PubMed  CAS  Google Scholar 

  22. Ito T, Ito M, Shiozawa J, Naito S, Kanematsu T, Sekine I (1999) Expression of the MMP-1 in human pancreatic carcinoma: relationship with prognostic factor. Mod Pathol 12:669–674

    PubMed  CAS  Google Scholar 

  23. Inoue T, Yashiro M, Nishimura S, Maeda K, Sawada T, Ogawa Y, Sowa M, Chung KH (1999) Matrix metalloproteinase-1 expression is a prognostic factor for patients with advanced gastric cancer. Int J Mol Med 4:73–77

    PubMed  CAS  Google Scholar 

  24. Nakopoulou L, Giannopoulou I, Gakiopoulou H, Liapis H, Tzonou A, Davaris PS (1999) Matrix metalloproteinase-1 and -3 in breast cancer: correlation with progesterone receptors and other clinicopathologic features. Hum Pathol 30:436–442

    Article  PubMed  CAS  Google Scholar 

  25. Kanamori Y, Matsushima M, Minaguchi T, Kobayashi K, Sagae S, Kudo R, Terakawa N, Nakamura Y (1999) Correlation between expression of the matrix metalloproteinase-1 gene in ovarian cancers and an insertion/deletion polymorphism in its promoter region. Cancer Res 59:4225–4227

    PubMed  CAS  Google Scholar 

  26. Nishioka Y, Kobayashi K, Sagae S, Ishioka S, Nishikawa A, Matsushima M, Kanamori Y, Minaguchi T, Nakamura Y, Tokino T, Kudo R (2000) A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter in endometrial carcinomas. Jpn J Cancer Res 91:612–615

    PubMed  CAS  Google Scholar 

  27. Murray GI, Duncan ME, O’Neil P, McKay JA, Melvin WT, Fothergill JE (1998) Matrix metalloproteinase-1 is associated with poor prognosis in oesophageal cancer. J Pathol 185:256–261

    Article  PubMed  CAS  Google Scholar 

  28. Yamashita K, Mori M, Kataoka A, Inoue H, Sugimachi K (2001) The clinical significance of MMP-1 expression in oesophageal carcinoma. Br J Cancer 84:276–282

    Article  PubMed  CAS  Google Scholar 

  29. Fernandez PM, Tabbara SO, Jacobs LK, Manning FC, Tsangaris TN, Schwartz AM, Kennedy KA, Patierno SR (2000) Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat 59:15–26

    Article  PubMed  CAS  Google Scholar 

  30. Gazit G, Lu J, Lee AS (1999) De-regulation of GRP stress protein expression in human breast cancer cell lines. Breast Cancer Res Treat 54:135–146

    Article  PubMed  CAS  Google Scholar 

  31. Koomagi R, Mattern J, Volm M (1999) Glucose-related protein (GRP78) and its relationship to the drug-resistance proteins P170, GST-pi, LRP56 and angiogenesis in non-small cell lung carcinomas. Anticancer Res 19:4333–4336

    PubMed  CAS  Google Scholar 

  32. Song MS, Park YK, Lee JH, Park K (2001) Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-epsilon/ERK/AP-1 signaling cascade. Cancer Res 61:8322–8330

    PubMed  CAS  Google Scholar 

  33. Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, Hada A, Arai M, Wakatsuki T, Matsubara O, Yamamoto N, Yamamoto M (2003) Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 38:605–614

    Article  PubMed  CAS  Google Scholar 

  34. Misra UK, Deedwania R, Pizzo SV (2005) Binding of activated alpha2–macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. J Biol Chem 280:26278–26286

    Article  PubMed  CAS  Google Scholar 

  35. Arap MA, Lahdenranta J, Mintz PJ, Hajitou A, Sarkis AS, Arap W, Pasqualini R (2004) Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cells 6:275–284

    Article  CAS  Google Scholar 

  36. Chen X, Ding Y, Liu CG, Mikhail S, Yang CS (2002) Overexpression of glucose-regulated protein 94 (Grp94) in esophageal adenocarcinomas of a rat surgical model and humans. Carcinogenesis 23:123–130

    Article  PubMed  CAS  Google Scholar 

  37. Uramoto H, Sugio K, Oyama T, Nakata S, Ono K, Yoshimastu T, Morita M, Yasumoto K (2005) Expression of endoplasmic reticulum molecular chaperone Grp78 in human lung cancer and its clinical significance. Lung Cancer 49:55–62

    Article  PubMed  Google Scholar 

  38. Lee KA, Shim JH, Kho CW, Park SG, Park BC, Kim JW, Lim JS, Choe YK, Paik SG, Yoon DY (2004) Protein profiling and identification of modulators regulated by the E7 oncogene in the C33A cell line by proteomics and genomics. Proteomics 4:839–848

    Article  PubMed  CAS  Google Scholar 

  39. Friedman DB, Hill S, Keller JW, Merchant NB, Levy SE, Coffey RJ, Caprioli RM (2004) Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 4:793–811

    Article  PubMed  CAS  Google Scholar 

  40. Bini L, Magi B, Marzocchi B, Arcuri F, Tripodi S, Cintorino M, Sanchez JC, Frutiger S, Hughes G, Pallini V, Hochstrasser DF, Tosi P (1997) Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis 18:2832–2841

    Article  PubMed  CAS  Google Scholar 

  41. Chahed K, Kabbage M, Ehret-Sabatier L, Lemaitre-Guillier C, Remadi S, Hoebeke J, Chouchane L (2005) Expression of fibrinogen E-fragment and fibrin E-fragment is inhibited in the human infiltrating ductal carcinoma of the breast: the two-dimensional electrophoresis and MALDI–TOF-mass spectrometry analyses. Int J Oncol 27:1425–1431

    PubMed  CAS  Google Scholar 

  42. Alaiya A, Roblick U, Egevad L, Carlsson A, Franzen B, Volz D, Huwendiek S, Linder S, Auer G (2000) Polypeptide expression in prostate hyperplasia and prostate adenocarcinoma. Anal Cell Pathol 21:1–9

    PubMed  CAS  Google Scholar 

  43. Nishimori T, Tomonaga T, Matsushita K, Oh-Ishi M, Kodera Y, Maeda T, Nomura F, Matsubara H, Shimada H, Ochiai T (2006) Proteomic analysis of primary esophageal squamous cell carcinoma reveals downregulation of a cell adhesion protein, periplakin. Proteomics 6:1011–1018

    Article  PubMed  CAS  Google Scholar 

  44. Kageyama S, Isono T, Iwaki H, Wakabayashi Y, Okada Y, Kontani K, Yoshimura K, Terai A, Arai Y, Yoshiki T (2004) Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine. Clin Chem 50:857–866

    Article  PubMed  CAS  Google Scholar 

  45. Li C, Hong Y, Tan YX, Zhou H, Ai JH, Li SJ, Zhang L, Xia QC, Wu JR, Wang HY, Zeng R (2004) Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics 3:399–409

    Article  PubMed  CAS  Google Scholar 

  46. Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH, Zhao R, Puravs E, Tra J, Michael CW, Misek DE, Hanash SM (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616

    Article  PubMed  CAS  Google Scholar 

  47. Johnson RJ, Liu N, Shanmugaratnam J, Fine RE (1998) Increased calreticulin stability in differentiated NG-108-15 cells correlates with resistance to apoptosis induced by antisense treatment. Brain Res Mol Brain Res 53:104–111

    Article  PubMed  CAS  Google Scholar 

  48. Prasad GL, Valverius EM, McDuffie E, Cooper HL (1992) Complementary DNA cloning of a novel epithelial cell marker protein, HME1, that may be down-regulated in neoplastic mammary cells. Cell Growth Differ 3:507–513

    PubMed  CAS  Google Scholar 

  49. Mazurek S, Boschek CB, Hugo F, Eigenbrodt E (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15:300–308

    Article  PubMed  CAS  Google Scholar 

  50. Wechsel HW, Petri E, Bichler KH, Feil G (1999) Marker for renal cell carcinoma (RCC): the dimeric form of pyruvate kinase type M2 (Tu M2–PK). Anticancer Res 19:2583–2590

    PubMed  CAS  Google Scholar 

  51. Ventrucci M, Cipolla A, Racchini C, Casadei R, Simoni P, Gullo L (2004) Tumor M2-pyruvate kinase, a new metabolic marker for pancreatic cancer. Dig Dis Sci 49:1149–1155

    Article  PubMed  CAS  Google Scholar 

  52. Schneider J, Neu K, Grimm H, Velcovsky HG, Weisse G, Eigenbrodt E (2002) Tumor M2-pyruvate kinase in lung cancer patients: immunohistochemical detection and disease monitoring. Anticancer Res 22:311–318

    PubMed  CAS  Google Scholar 

  53. Luftner D, Mesterharm J, Akrivakis C, Geppert R, Petrides PE, Wernecke KD, Possinger K (2000) Tumor type M2 pyruvate kinase expression in advanced breast cancer. Anticancer Res 20:5077–5082

    PubMed  CAS  Google Scholar 

  54. Kaura B, Bagga R, Patel FD (2004) Evaluation of the Pyruvate Kinase isoenzyme tumor (Tu M2–PK) as a tumor marker for cervical carcinoma. J Obstet Gynaecol Res 30:193–196

    Article  PubMed  CAS  Google Scholar 

  55. Schneider J, Schulze G (2003) Comparison of tumor M2-pyruvate kinase (tumor M2–PK), carcinoembryonic antigen (CEA), carbohydrate antigens CA 19-9 and CA 72-4 in the diagnosis of gastrointestinal cancer. Anticancer Res 23:5089–5093

    PubMed  CAS  Google Scholar 

  56. Hardt PD, Toepler M, Ngoumou B, Rupp J, Kloer HU (2003) Measurement of fecal pyruvate kinase type M2 (tumor M2–PK) concentrations in patients with gastric cancer, colorectal cancer, colorectal adenomas and controls. Anticancer Res 23:851–853

    PubMed  CAS  Google Scholar 

  57. Schulze G (2000) The tumor marker tumor M2–PK: an application in the diagnosis of gastrointestinal cancer. Anticancer Res 20:4961–4964

    PubMed  CAS  Google Scholar 

  58. Koss K, Harrison RF, Gregory J, Darnton SJ, Anderson MR, Jankowski JA (2004) The metabolic marker tumour pyruvate kinase type M2 (tumour M2–PK) shows increased expression along the metaplasia–dysplasia–adenocarcinoma sequence in Barrett’s oesophagus. J Clin Pathol 57:1156–1159

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the State Key Basic Research grant of China (2001CB510208, 2002CB513101, 2004CB518705), Beijing Science Fund (7042038), Specialized Research Fund for the Doctoral Program of Higher Education of China (20050023046), and Program for Changjiang Scholars and Innovative Research Team in University (IRT0416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Rong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, XL., Hu, H., Lin, DC. et al. Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell carcinoma. J Mol Med 85, 863–875 (2007). https://doi.org/10.1007/s00109-007-0159-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0159-4

Keywords

Navigation