Skip to main content
Log in

Identification of cellular targets for the human papillomavirus E6 and E7 oncogenes by RNA interference and transcriptome analyses

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Specific types of human papillomaviruses (HPVs) cause cervical cancer, the second most common tumor in women worldwide. Both cellular transformation and the maintenance of the oncogenic phenotype of HPV-positive tumor cells are linked to the expression of the viral E6 and E7 oncogenes. To identify downstream cellular target genes for the viral oncogenes, we silenced endogenous E6 and E7 expression in HPV-positive HeLa cells by RNA interference (RNAi). Subsequently, we assessed changes of the cellular transcriptome by genome-wide microarray analysis. We identified 648 genes, which were either downregulated (360 genes) or upregulated (288 genes), upon inhibition of E6/E7 expression. A large fraction of these genes is involved in tumor-relevant processes, such as apoptosis control, cell cycle regulation, or spindle formation. Others may represent novel cellular targets for the HPV oncogenes, such as a large group of C-MYC-associated genes involved in RNA processing and splicing. Comparison with published microarray data revealed a substantial concordance between the genes repressed by RNAi-mediated E6/E7 silencing in HeLa cells and genes reported to be upregulated in HPV-positive cervical cancer biopsies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350

    Article  PubMed  Google Scholar 

  2. Boyer SN, Wazer DE, Band V (1996) E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 56:4620–4624

    PubMed  CAS  Google Scholar 

  3. Munger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M, Zacny VL (2001) Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 20:7888–7898

    Article  PubMed  CAS  Google Scholar 

  4. Duensing S, Duensing A, Crum CP, Munger K (2001) Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res 61:2356–2360

    PubMed  CAS  Google Scholar 

  5. Vogt M, Butz K, Dymalla S, Semzow J, Hoppe-Seyler F (2006) Inhibition of Bax activity is crucial for the antiapoptotic function of the human papillomavirus E6 oncoprotein. Oncogene 25:4009–4015

    Article  PubMed  CAS  Google Scholar 

  6. Wells SI, Aronow BJ, Wise TM, Williams SS, Couget JA, Howley PM (2003) Transcriptome signature of irreversible senescence in human papillomavirus-positive cervical cancer cells. Proc Natl Acad Sci U S A 100:7093–7098

    Article  PubMed  CAS  Google Scholar 

  7. Thierry F, Benotmane MA, Demeret C, Mori M, Teissier S, Desaintes C (2004) A genomic approach reveals a novel mitotic pathway in papillomavirus carcinogenesis. Cancer Res 64:895–903

    Article  PubMed  CAS  Google Scholar 

  8. Webster K, Parish J, Pandya M, Stern PL, Clarke AR, Gaston K (2000) The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. J Biol Chem 275:87–94

    Article  PubMed  CAS  Google Scholar 

  9. Demeret C, Garcia-Carranca A, Thierry F (2003) Transcription-independent triggering of the extrinsic pathway of apoptosis by human papillomavirus 18 E2 protein. Oncogene 22:168–175

    Article  PubMed  CAS  Google Scholar 

  10. Blachon S, Bellanger S, Demeret C, Thierry F (2005) Nucleo-cytoplasmic shuttling of high risk human Papillomavirus E2 proteins induces apoptosis. J Biol Chem 280:36088–36098

    Article  PubMed  CAS  Google Scholar 

  11. Garner-Hamrick PA, Fostel JM, Chien WM, Banerjee NS, Chow LT, Broker TR, Fisher C (2004) Global effects of human papillomavirus type 18 E6/E7 in an organotypic keratinocyte culture system. J Virol 78:9041–9050

    Article  PubMed  CAS  Google Scholar 

  12. Rosty C, Sheffer M, Tsafrir D, Stransky N, Tsafrir I, Peter M, de Cremoux P, de La Rochefordiere A, Salmon R, Dorval T, Thiery JP, Couturier J, Radvanyi F, Domany E, Sastre-Garau X (2005) Identification of a proliferation gene cluster associated with HPV E6/E7 expression level and viral DNA load in invasive cervical carcinoma. Oncogene 24:7094–7104

    Article  PubMed  CAS  Google Scholar 

  13. Santin AD, Zhan F, Bignotti E, Siegel ER, Cane S, Bellone S, Palmieri M, Anfossi S, Thomas M, Burnett A, Kay HH, Roman JJ, O’Brien TJ, Tian E, Cannon MJ, Shaughnessy J Jr, Pecorelli S (2005) Gene expression profiles of primary HPV16- and HPV18-infected early stage cervical cancers and normal cervical epithelium: identification of novel candidate molecular markers for cervical cancer diagnosis and therapy. Virology 331:269–291

    Article  PubMed  CAS  Google Scholar 

  14. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  15. Cole ST, Danos O (1987) Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome. Phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products. J Mol Biol 193:599–608

    Article  PubMed  CAS  Google Scholar 

  16. Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F (2003) siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 22:5938–5945

    Article  PubMed  CAS  Google Scholar 

  17. Zhou G, Roizman B (2000) Wild-type herpes simplex virus 1 blocks programmed cell death and release of cytochrome c but not the translocation of mitochondrial apoptosis-inducing factor to the nuclei of human embryonic lung fibroblasts. J Virol 74:9048–9053

    Article  PubMed  CAS  Google Scholar 

  18. Butz K, Geisen C, Ullmann A, Zentgraf H, Hoppe-Seyler F (1998) Uncoupling of p21WAF1/CIP1/SDI1 mRNA and protein expression upon genotoxic stress. Oncogene 17:781–787

    Article  PubMed  CAS  Google Scholar 

  19. Schneider J, Buness A, Huber W, Volz J, Kioschis P, Hafner M, Poustka A, Sultmann H (2004) Systematic analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in microarray experiments. BMC Genomics 5:29

    Article  PubMed  Google Scholar 

  20. Buness A, Huber W, Steiner K, Sultmann H, Poustka A (2005) arrayMagic: two-colour cDNA microarray quality control and preprocessing. Bioinformatics 21:554–556

    Article  PubMed  CAS  Google Scholar 

  21. Wettenhall JM, Smyth GK (2004) limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20:3705–3706

    Article  PubMed  CAS  Google Scholar 

  22. Beissbarth T, Speed TP (2004) GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20:1464–1465

    Article  PubMed  CAS  Google Scholar 

  23. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, Miller-Graziano C, Moldawer LL, Mindrinos MN, Davis RW, Tompkins RG, Lowry SF; Inflamm and Host Response to Injury Large Scale Collab. Res. Program (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032–1037

    Article  PubMed  CAS  Google Scholar 

  24. Bussey KJ, Kane D, Sunshine M, Narasimhan S, Nishizuka S, Reinhold WC, Zeeberg B, Ajay W, Weinstein JN (2003) Matchminer: a tool for batch navigation among gene and gene product identities. Genome Biol 4:R27

    Article  PubMed  Google Scholar 

  25. Schneider-Gadicke A, Schwarz E (1986) Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. EMBO J 5:2285–2292

    PubMed  CAS  Google Scholar 

  26. Hall AH, Alexander KA (2003) RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol 77:6066–6069

    Article  PubMed  CAS  Google Scholar 

  27. Hwang ES, Riese DJ 2nd, Settleman J, Nilson LA, Honig J, Flynn S, DiMaio D (1993) Inhibition of cervical carcinoma cell line proliferation by the introduction of a bovine papillomavirus regulatory gene. J Virol 67:3720–3729

    PubMed  CAS  Google Scholar 

  28. Cullen BR (2006) Enhancing and confirming the specificity of RNAi experiments. Nat Methods 3:677–681

    Article  PubMed  CAS  Google Scholar 

  29. Fedorov Y, King A, Anderson E, Karpilow J, Ilsley D, Marshall W, Khvorova A (2005) Different delivery methods-different expression profiles. Nat Methods 2:241

    Article  PubMed  CAS  Google Scholar 

  30. Kelley ML, Keiger KE, Lee CJ, Huibregtse JM (2005) The global transcriptional effects of the human papillomavirus E6 protein in cervical carcinoma cell lines are mediated by the E6AP ubiquitin ligase. J Virol 79:3737–3747

    Article  PubMed  CAS  Google Scholar 

  31. Durst M, Croce CM, Gissmann L, Schwarz E, Huebner K (1987) Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas. Proc Natl Acad Sci USA 84:1070–1074

    Article  PubMed  CAS  Google Scholar 

  32. Peter M, Rosty C, Couturier J, Radvanyi F, Teshima H, Sastre-Garau X (2006) MYC activation associated with the integration of HPV DNA at the MYC locus in genital tumors. Oncogene 25:5985–5993

    Article  PubMed  CAS  Google Scholar 

  33. Wentzensen N, Ridder R, Klaes R, Vinokurova S, Schaefer U, Doeberitz MK (2002) Characterization of viral-cellular fusion transcripts in a large series of HPV16 and 18 positive anogenital lesions. Oncogene 21:419–426

    Article  PubMed  CAS  Google Scholar 

  34. Kinoshita T, Shirasawa H, Shino Y, Moriya H, Desbarats L, Eilers M, Simizu B (1997) Transactivation of prothymosin alpha and c-myc promoters by human papillomavirus type 16 E6 protein. Virology 232:53–61

    Article  PubMed  CAS  Google Scholar 

  35. Oh ST, Kyo S, Laimins LA (2001) Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J Virol 75:5559–5566

    Article  PubMed  CAS  Google Scholar 

  36. Gewin L, Galloway DA (2001) E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-myc. J Virol 75:7198–7201

    Article  PubMed  CAS  Google Scholar 

  37. DeFilippis RA, Goodwin EC, Wu L, DiMaio D (2003) Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J Virol 77:1551–1563

    Article  PubMed  CAS  Google Scholar 

  38. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22:5323–5335

    Article  PubMed  CAS  Google Scholar 

  39. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100:11606–11611

    Article  PubMed  CAS  Google Scholar 

  40. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Landesstiftung Baden-Württemberg (P-LS-RNS/18) and by a grant from the German National Genome Research Network NGFN-2 (01GR0418). We thank Sabrina Balaguer and Gabi Rottsahl for excellent technical assistance. Ruprecht Kuner and Markus Vogt contributed equally to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Hoppe-Seyler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Microarray analysis (LIMMA) revealed 648 genes which were affected by siRNA-mediated inhibition of E6/E7 expression in HeLa cells. All genes fulfill the cut-off criteria of an FDR < 5% and a linear fold change ±1.5. Some genes were marked “yes” for their presence in previously published studies [6, 7, 1113, 30,]. (PDF 428 kb)

Supplementary Table 2

Functional annotation of potential E6/E7 target genes which were identified in the present and in previously published studies [6, 7, 1113, 30,]. Analysis was performed using the GO software GOstat. GO results were filtered with respect to the category “biological process,” as detailed in the text. Every GO category includes GO identifier, GO name, presence of the genes in the analyzed signatures (Groupcount) in comparison to the total amount of genes annotated in this GO category (Totalcount), and the statistical significance as p value. (PDF 214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuner, R., Vogt, M., Sultmann, H. et al. Identification of cellular targets for the human papillomavirus E6 and E7 oncogenes by RNA interference and transcriptome analyses. J Mol Med 85, 1253–1262 (2007). https://doi.org/10.1007/s00109-007-0230-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0230-1

Keywords

Navigation