Skip to main content

Advertisement

Log in

Laminin isoforms in development and disease

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The members of the laminin family of heterotrimers are major constituents of all basement membranes, sheet-like extracellular structures, present in almost all organs. The laminins bind to cell surface receptors and thereby tightly connect the basement membrane to the adjacent cell layer. This provides for the specific basement membrane functions to stabilize cellular structures, to serve as effective physical barriers, and furthermore, to govern cell fate by inducing intracellular signalling cascades. Many different types of diseases involve basement membranes and laminins. Metastasizing solid tumors must pass through basement membranes to reach the vascular system, and various microbes and viruses enter the cells through direct interaction with laminins. Furthermore, whereas mutations in one specific laminin chain lead to a muscular disorder, mutations of other laminin chains cause skin blistering and kidney defects, respectively. This review summarizes recent progress concerning the molecular mechanisms of laminins in development and disease. The current knowledge may lead to clinical treatment of lamininopathies and may include stem-cell approaches as well as gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 20:255–284

    PubMed  CAS  Google Scholar 

  2. Yurchenco PD, Amenta PS, Patton BL (2004) Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol 22(7):521–538

    PubMed  CAS  Google Scholar 

  3. Aumailley M et al (2005) A simplified laminin nomenclature. Matrix Biol 24(5):326–332

    PubMed  CAS  Google Scholar 

  4. Cheng YS, Champliaud MF, Burgeson RE, Marinkovich MP, Yurchenco PD (1997) Self-assembly of laminin isoforms. J Biol Chem 272(50):31525–31532

    PubMed  CAS  Google Scholar 

  5. Timpl R, Tisi D, Talts JF, Andac Z, Sasaki T, Hohenester E (2000) Structure and function of laminin LG modules. Matrix Biol 19(4):309–317

    PubMed  CAS  Google Scholar 

  6. Schéele S et al (2005) Laminin alpha1 globular domains 4–5 induce fetal development but are not vital for embryonic basement membrane assembly. Proc Natl Acad Sci U S A 102(5):1502–1506

    PubMed  Google Scholar 

  7. De Arcangelis A, Georges-Labouesse E (2000) Integrin and ECM functions: roles in vertebrate development. Trends genet 16(12):389–395, 536

    PubMed  Google Scholar 

  8. Nishiuchi R et al (2006) Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biol 25(3):189–197

    PubMed  CAS  Google Scholar 

  9. Sonnenberg A, Modderman PW, Hogervorst F (1988) Laminin receptor on platelets is the integrin VLA-6. Nature 336(6198):487–489

    PubMed  CAS  Google Scholar 

  10. Bokel C, Brown NH (2002) Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev Cell 3(3):311–321

    PubMed  CAS  Google Scholar 

  11. Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119:199–207

    PubMed  CAS  Google Scholar 

  12. Talts JF, Andac Z, Gohring W, Brancaccio A, Timpl R (1999) Binding of the G domains of laminin alpha1 and alpha2 chains and perlecan to heparin, sulfatides, alpha-dystroglycan and several extracellular matrix proteins. Embo J 18(4):863–870

    PubMed  CAS  Google Scholar 

  13. Andac Z, Sasaki T, Mann K, Brancaccio A, Deutzmann R, Timpl R (1999) Analysis of heparin, alpha-dystroglycan and sulfatide binding to the G domain of the laminin alpha1 chain by site-directed mutagenesis. J Mol Biol 287(2):253–264

    PubMed  CAS  Google Scholar 

  14. Hohenester E, Tisi D, Talts JF, Timpl R (1999) The crystal structure of a laminin G-like module reveals the molecular basis of alpha-dystroglycan binding to laminins, perlecan, and agrin. Mol Cell 4(5):783–792

    PubMed  CAS  Google Scholar 

  15. Wizemann H, Garbe JH, Friedrich MV, Timpl R, Sasaki T, Hohenester E (2003) Distinct requirements for heparin and alpha-dystroglycan binding revealed by structure-based mutagenesis of the laminin alpha2 LG4–LG5 domain pair. J Mol Biol 332(3):635–642

    PubMed  CAS  Google Scholar 

  16. Talts JF et al (2000) Structural and functional analysis of the recombinant G domain of the laminin alpha4 chain and its proteolytic processing in tissues. J Biol Chem 275(45):35192–35199

    PubMed  CAS  Google Scholar 

  17. Ferletta M et al (2003) Opposing roles of integrin alpha6Abeta1 and dystroglycan in laminin-mediated extracellular signal-regulated kinase activation. Mol Biol Cell 14(5):2088–2103

    PubMed  CAS  Google Scholar 

  18. Yu H, Talts JF (2003) Beta1 integrin and alpha-dystroglycan binding sites are localized to different laminin-G-domain-like (LG) modules within the laminin alpha5 chain G domain. Biochem J 371:289–299

    PubMed  CAS  Google Scholar 

  19. Ido H et al (2004) Molecular dissection of the alpha-dystroglycan- and integrin-binding sites within the globular domain of human laminin 10. J Biol Chem 279(12):10946–10954

    PubMed  CAS  Google Scholar 

  20. Li S et al (2005) Laminin-sulfatide binding initiates basement membrane assembly and enables receptor signaling in Schwann cells and fibroblasts. J Cell Biol 169(1):179–189

    PubMed  CAS  Google Scholar 

  21. Miner JH, Li C, Mudd JL, Go G, Sutherland AE (2004) Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development 131(10):2247–2256

    Google Scholar 

  22. Smyth N et al (1999) Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol 144(1):151–160

    PubMed  CAS  Google Scholar 

  23. Ogawa J et al (2005) The essential role of laminin-1 in extraembryonic organization. In: Jefferson Matrix Biology Days—2005 12th international symposium on basement membranes, Philadelphia

  24. Miner JH, Cunningham J, Sanes JR (1998) Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J Cell Biol 143(6):1713–1723

    PubMed  CAS  Google Scholar 

  25. Guo LT et al (2003) Laminin alpha2 deficiency and muscular dystrophy; genotype–phenotype correlation in mutant mice. Neuromuscul Disord 13(3):207–215

    PubMed  CAS  Google Scholar 

  26. Glukhova M, Koteliansky V, Fondacci C, Marotte F, Rappaport L (1993) Laminin variants and integrin laminin receptors in developing and adult human smooth muscle. Dev Biol 157(2):437–447

    PubMed  CAS  Google Scholar 

  27. Patton BL (2000) Laminins of the neuromuscular system. Microsc Res Tech 51(3):247–261

    PubMed  CAS  Google Scholar 

  28. Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP (1995) The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat Genet 10(4):400–406

    PubMed  CAS  Google Scholar 

  29. Noakes PG, Gautam M, Mudd J, Sanes JR, Merlie JP (1995) Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin beta 2. Nature 374(6519):258–262

    PubMed  CAS  Google Scholar 

  30. Aumailley M, Rousselle P (1999) Laminins of the dermo-epidermal junction. Matrix Biol 18(1):19–28

    PubMed  CAS  Google Scholar 

  31. Baker SE et al (1996) Laminin-5 and hemidesmosomes: role of the alpha 3 chain subunit in hemidesmosome stability and assembly. J Cell Sci 109(10):2509–2520

    PubMed  CAS  Google Scholar 

  32. Aberdam D, Aguzzi A, Baudoin C, Galliano MF, Ortonne JP, Meneguzzi G (1994) Developmental expression of nicein adhesion protein (laminin-5) subunits suggests multiple morphogenic roles. Cell Adhes Commun 2(2):115–129

    PubMed  CAS  Google Scholar 

  33. Ryan MC, Lee K, Miyashita Y, Carter WG (1999) Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J Cell Biol 145(6):1309–1323

    PubMed  CAS  Google Scholar 

  34. Kuster JE, Guarnieri MH, Ault JG, Flaherty L, Swiatek PJ (1997) IAP insertion in the murine LamB3 gene results in junctional epidermolysis bullosa. Mamm Genome 8(9):673–681

    PubMed  CAS  Google Scholar 

  35. Meng X, Pulkkinen L et al (2003) Targeted inactivation of murine laminin gamma2-chain gene recapitulates human junctional epidermolysis bullosa. J Invest Dermatol 121(4):720–731

    PubMed  CAS  Google Scholar 

  36. Miner JH (1997) The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8–11, and cloning of a novel alpha3 isoform. J Cell Biol 137(3):685–701

    PubMed  CAS  Google Scholar 

  37. Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85(3):979–1000

    PubMed  CAS  Google Scholar 

  38. Tunggal P, Smyth N, Paulsson M, Ott MC (2000) Laminins: structure and genetic regulation. Microsc Res Tech 51(3):214–227

    PubMed  CAS  Google Scholar 

  39. Nyström A, Holmblad J, Pedrosa-Domellof F, Sasaki T, Durbeej M (2006) Extraocular muscle is spared upon complete laminin alpha2 chain deficiency: comparative expression of laminin and integrin isoforms. Matrix Biol 25(6):382–385

    PubMed  Google Scholar 

  40. Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, Sorokin L, Risling M, Cao Y, Tryggvason K (2002) Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol Cell Biol 22(4):1194–1202

    PubMed  CAS  Google Scholar 

  41. Patton BL, Cunningham JM, Thyboll J, Kortesmaa J, Westerblad H, Edstrom L, Tryggvason K, Sanes JR (2001) Properly formed but improperly localized synaptic specializations in the absence of laminin alpha4. Nat Neurosci 4(6):597–604

    PubMed  CAS  Google Scholar 

  42. Gersdorff N, Kohfeldt E, Sasaki T, Timpl R, Miosge N (2005) Laminin gamma3 chain binds to nidogen and is located in murine basement membranes. J Biol Chem 280(23):22146–22153

    PubMed  CAS  Google Scholar 

  43. Ekblom P, Alitalo K, Vaheri A, Timpl R, Saxen L (1980) Induction of a basement membrane glycoprotein in embryonic kidney: possible role of laminin in morphogenesis. Proc Natl Acad Sci USA 77(1):485–489

    PubMed  CAS  Google Scholar 

  44. Klein G, Langegger M, Timpl R, Ekblom P (1988) Role of laminin A chain in the development of epithelial cell polarity. Cell 55(2):331–341

    PubMed  CAS  Google Scholar 

  45. Ekblom P et al (1994) Role of mesenchymal nidogen for epithelial morphogenesis in vitro. Development 120(7):2003–2014

    PubMed  CAS  Google Scholar 

  46. Willem M et al (2002) Specific ablation of the nidogen-binding site in the laminin gamma1 chain interferes with kidney and lung development. Development 129(11):2711–2722

    PubMed  CAS  Google Scholar 

  47. Miner JH, Li C (2000) Defective glomerulogenesis in the absence of laminin alpha5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol 217(2):278–289

    PubMed  CAS  Google Scholar 

  48. Jarad G, Cunningham J, Shaw AS, Miner JH (2006) Proteinuria precedes podocyte abnormalities in Lamb2-/- mice, implicating the glomerular basement membrane as an albumin barrier. J Clin Invest 116(8):2272–2279

    PubMed  CAS  Google Scholar 

  49. Zenker M et al (2004) Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 13(21):2625–2632

    PubMed  CAS  Google Scholar 

  50. Voit T, Tomé FS (2004) The congenital muscular dystrophies. In: Engel A, Franizini-Armstrong C (eds) Myology. McGraw-Hill, New York, pp 1203–1238

    Google Scholar 

  51. Gawlik KI, Li JY, Petersen A, Durbeej M (2006) Laminin alpha1 chain improves laminin alpha2 chain deficient peripheral neuropathy. Hum Mol Genet 15(18):2690–2700

    PubMed  CAS  Google Scholar 

  52. Gawlik KI, Mayer U, Blomberg K, Sonnenberg A, Ekblom P, Durbeej M (2006) Laminin alpha1 chain mediated reduction of laminin alpha2 chain deficient muscular dystrophy involves integrin alpha7beta1 and dystroglycan. FEBS Lett 580(7):1759–1765

    PubMed  CAS  Google Scholar 

  53. Lisi MT, Cohn RD (2007) Congenital muscular dystrophies: new aspects of an expanding group of disorders. Biochim Biophys Acta 1772(2):159–172

    PubMed  CAS  Google Scholar 

  54. Yurchenco PD, Cheng YS, Campbell K, Li S (2004) Loss of basement membrane, receptor and cytoskeletal lattices in a laminin-deficient muscular dystrophy. J Cell Sci 117(5):735–742

    PubMed  CAS  Google Scholar 

  55. Yang D et al (2005) Coordinate control of axon defasciculation and myelination by laminin-2 and -8. J Cell Biol 168(4):655–666

    PubMed  CAS  Google Scholar 

  56. Chun SJ, Rasband MN, Sidman RL, Habib AA, Vartanian T (2003) Integrin-linked kinase is required for laminin-2-induced oligodendrocyte cell spreading and CNS myelination. J Cell Biol 163(2):397–408

    PubMed  CAS  Google Scholar 

  57. Yuasa K et al (2004) Laminin alpha2 is essential for odontoblast differentiation regulating dentin sialoprotein expression. J Biol Chem 279(11):10286–10292

    PubMed  CAS  Google Scholar 

  58. Häger M, Gawlik K, Nystrom A, Sasaki T, Durbeej M (2005) Laminin alpha 1 chain corrects male infertility caused by absence of laminin alpha 2 chain. Am J Pathol 167(3):823–833

    PubMed  Google Scholar 

  59. Kuang W, Xu H, Vachon PH, Liu L, Loechel F, Wewer UM, Engvall E (1998) Merosin-deficient congenital muscular dystrophy. Partial genetic correction in two mouse models. J Clin Invest 102(4):844–852

    PubMed  CAS  Google Scholar 

  60. Gawlik K, Miyagoe-Suzuki Y, Ekblom P, Takeda S, Durbeej M (2004) Laminin alpha1 chain reduces muscular dystrophy in laminin alpha2 chain deficient mice. Hum Mol Genet 13(16):1775–1784

    PubMed  CAS  Google Scholar 

  61. Moll J et al (2001) An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy. Nature 413(6853):302–307

    PubMed  CAS  Google Scholar 

  62. Bentzinger CF, Barzaghi P, Lin S, Ruegg MA (2005) Overexpression of mini-agrin in skeletal muscle increases muscle integrity and regenerative capacity in laminin-alpha2-deficient mice. FASEB J 19(8):934–942

    PubMed  CAS  Google Scholar 

  63. Qiao C et al (2005) Amelioration of laminin-alpha2-deficient congenital muscular dystrophy by somatic gene transfer of miniagrin. Proc Natl Acad Sci USA 102(34):11999–12004

    PubMed  CAS  Google Scholar 

  64. Girgenrath M, Dominov JA, Kostek CA, Miller JB (2004) Inhibition of apoptosis improves outcome in a model of congenital muscular dystrophy. J Clin Invest 114(11):1635–1639

    PubMed  CAS  Google Scholar 

  65. Miner JH, Go G, Cunningham J, Patton BL, Jarad G (2006) Transgenic isolation of skeletal muscle and kidney defects in laminin beta2 mutant mice: implications for Pierson syndrome. Development 133(5):967–975

    PubMed  CAS  Google Scholar 

  66. Ercolini AM, Miller SD (2006) Mechanisms of immunopathology in murine models of central nervous system demyelinating disease. J Immunol 176(6):3293–3298

    PubMed  CAS  Google Scholar 

  67. Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM (2001) Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol 153(5):933–946

    PubMed  CAS  Google Scholar 

  68. Agrawal S et al (2006) Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 203(4):1007–1019

    PubMed  CAS  Google Scholar 

  69. Mitsuhashi Y, Hashimoto I (2003) Genetic abnormalities and clinical classification of epidermolysis bullosa. Arch Dermatol Res 295(Suppl 1):S29–S33

    PubMed  CAS  Google Scholar 

  70. Uitto J, Richard G (2004) Progress in epidermolysis bullosa: genetic classification and clinical implications. Am J Med Genet C Semin Med Genet 131C:61–74

    PubMed  Google Scholar 

  71. Mavilio F et al (2006) Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med 12(12):1397–1402

    PubMed  CAS  Google Scholar 

  72. McLean WH et al (2003) An unusual N-terminal deletion of the laminin alpha3a isoform leads to the chronic granulation tissue disorder laryngo-onycho-cutaneous syndrome. Hum Mol Genet 12(18):2395–2409

    PubMed  CAS  Google Scholar 

  73. Kondo M et al (2003) Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 21:759–806

    PubMed  CAS  Google Scholar 

  74. Gu Y, Sorokin L, Durbeej M, Hjalt T, Jonsson JI, Ekblom M (1999) Characterization of bone marrow laminins and identification of alpha5-containing laminins as adhesive proteins for multipotent hematopoietic FDCP-Mix cells. Blood 93(8):2533–2542

    PubMed  CAS  Google Scholar 

  75. Siler U et al (2000) Characterization and functional analysis of laminin isoforms in human bone marrow. Blood 96(13):4194–4203

    PubMed  CAS  Google Scholar 

  76. Siler U, Rousselle P, Muller CA, Klein G (2002) Laminin gamma2 chain as a stromal cell marker of the human bone marrow microenvironment. Br J Haematol 119(1):212–220

    PubMed  CAS  Google Scholar 

  77. Nigatu A et al (2006) Megakaryocytic cells synthesize and platelets secrete alpha5-laminins, and the endothelial laminin isoform laminin 10 (alpha5beta1gamma1) strongly promotes adhesion but not activation of platelets. Thromb Haemost 95(1):85–93

    PubMed  CAS  Google Scholar 

  78. Gu YC et al (2003) Laminin isoform-specific promotion of adhesion and migration of human bone marrow progenitor cells. Blood 101(3):877–885

    PubMed  CAS  Google Scholar 

  79. Qian H, Tryggvason K, Jacobsen SE, Ekblom M (2006) Contribution of alpha6 integrins to hematopoietic stem and progenitor cell homing to bone marrow and collaboration with alpha4 integrins. Blood 107(9):3503–3510

    PubMed  CAS  Google Scholar 

  80. Wondimu Z et al (2004) An endothelial laminin isoform, laminin 8 (alpha4beta1gamma1), is secreted by blood neutrophils, promotes neutrophil migration and extravasation, and protects neutrophils from apoptosis. Blood 104(6):1859–1866

    PubMed  CAS  Google Scholar 

  81. Pedraza C et al (2000) Monocytic cells synthesize, adhere to, and migrate on laminin-8 (alpha 4 beta 1 gamma 1). J Immunol 165(10):5831–5838

    PubMed  CAS  Google Scholar 

  82. Parsons SF et al (2001) Lutheran blood group glycoprotein and its newly characterized mouse homologue specifically bind alpha5 chain-containing human laminin with high affinity. Blood 97(1):312–320

    PubMed  CAS  Google Scholar 

  83. Wang J et al (2006) Cardiomyopathy associated with microcirculation dysfunction in laminin alpha4 chain-deficient mice. J Biol Chem 281(1):213–220

    PubMed  CAS  Google Scholar 

  84. Amin K, Janson C, Seveus L, Miyazaki K, Virtanen I, Venge P (2005) Uncoordinated production of Laminin-5 chains in airways epithelium of allergic asthmatics. Respir Res 6:110

    PubMed  Google Scholar 

  85. Patarroyo M, Tryggvason K, Virtanen I (2002) Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 12(13):197–207

    PubMed  CAS  Google Scholar 

  86. Maatta M, Virtanen I, Burgeson R, Autio-Harmainen H (2001) Comparative analysis of the distribution of laminin chains in the basement membranes in some malignant epithelial tumors: the alpha1 chain of laminin shows a selected expression pattern in human carcinomas. J Histochem Cytochem 49(6):711–726

    PubMed  CAS  Google Scholar 

  87. Wang H et al (2004) Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol 164(6):935–941

    PubMed  CAS  Google Scholar 

  88. Katayama M, Sekiguchi K (2004) Laminin-5 in epithelial tumour invasion. J Mol Histol 35(3):277–286

    PubMed  CAS  Google Scholar 

  89. Miyazaki K (2006) Laminin-5 (laminin-332): unique biological activity and role in tumor growth and invasion. Cancer Sci 97(2):91–98

    PubMed  CAS  Google Scholar 

  90. Davidson B et al (2006) Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from diffuse malignant peritoneal mesothelioma. Clin Cancer Res 12(20):5944–5950

    PubMed  CAS  Google Scholar 

  91. Ljubimova JY et al (2001) Overexpression of alpha4 chain-containing laminins in human glial tumors identified by gene microarray analysis. Cancer Res 61(14):5601–5610

    PubMed  CAS  Google Scholar 

  92. Ljubimova JY et al (2004) Association between laminin-8 and glial tumor grade, recurrence, and patient survival. Cancer 101(3):604–612

    PubMed  Google Scholar 

  93. Fujita M et al (2005) Overexpression of beta1-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases. Breast Cancer Res 7(4):R411–R421

    PubMed  CAS  Google Scholar 

  94. Khazenzon NM et al (2003) Antisense inhibition of laminin-8 expression reduces invasion of human gliomas in vitro. Mol Cancer Ther 2(10):985–994

    PubMed  CAS  Google Scholar 

  95. Nagato S et al (2005) Downregulation of laminin alpha4 chain expression inhibits glioma invasion in vitro and in vivo. Int J Cancer 117(1):41–50

    PubMed  CAS  Google Scholar 

  96. Fujita M et al (2006) Inhibition of laminin-8 in vivo using a novel poly (malic acid)-based carrier reduces glioma angiogenesis. Angiogenesis 9(4):183–191

    PubMed  CAS  Google Scholar 

  97. Zhou Z et al (2004) Deletion of laminin-8 results in increased tumor neovascularization and metastasis in mice. Cancer Res 64(12):4059–4063

    PubMed  CAS  Google Scholar 

  98. Hauck CR (2002) Cell adhesion receptors-signaling capacity and exploitation by bacterial pathogens. Med Microbiol Immunol (Berl) 191(2):55–62

    CAS  Google Scholar 

  99. Ljungh A, Moran AP, Wadstrom T (1996) Interactions of bacterial adhesins with extracellular matrix and plasma proteins: pathogenic implications and therapeutic possibilities. FEMS Immunol Med Microbiol 16(2):117–126

    PubMed  CAS  Google Scholar 

  100. Furtado GC, Cao Y, Joiner KA (1992) Laminin on Toxoplasma gondii mediates parasite binding to the beta 1 integrin receptor alpha 6 beta 1 on human foreskin fibroblasts and Chinese hamster ovary cells. Infect Immun 60(11):4925–4931

    PubMed  CAS  Google Scholar 

  101. Rambukkana A, Salzer JL, Yurchenco PD, Tuomanen EI (1997) Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin-alpha2 chain. Cell 88(6):811–821

    PubMed  CAS  Google Scholar 

  102. Rambukkana A et al (1998) Role of alpha-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science 282(5396):2076–2079

    PubMed  CAS  Google Scholar 

  103. Ng V et al (2000) Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. Cell 103(3):511–524

    PubMed  CAS  Google Scholar 

  104. Cao W et al (1998) Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282(5396):2079–2081

    PubMed  CAS  Google Scholar 

  105. Rambukkana A, Kunz S, Min J, Campbell KP, Oldstone MB (2003) Targeting Schwann cells by nonlytic arenaviral infection selectively inhibits myelination. Proc Natl Acad Sci USA 100(26):16071–16076

    PubMed  CAS  Google Scholar 

  106. Mendes-Giannini MJ et al (2000) Pathogenesis II: fungal responses to host responses: interaction of host cells with fungi. Med Mycol 38(Suppl 1):113–123

    PubMed  Google Scholar 

  107. Valkonen KH, Wadstrom T, Moran AP (1997) Identification of the N-acetylneuraminyllactose-specific laminin-binding protein of Helicobacter pylori. Infect Immun 65(3):916–923

    PubMed  CAS  Google Scholar 

  108. Shimoji Y, Ng V, Matsumura K, Fischetti VA, Rambukkana A (1999) A 21-kDa surface protein of Mycobacterium leprae binds peripheral nerve laminin-2 and mediates Schwann cell invasion. Proc Natl Acad Sci USA 96(17):9857–9862

    PubMed  CAS  Google Scholar 

  109. Boshuizen JA et al (2004) Rotavirus enterotoxin NSP4 binds to the extracellular matrix proteins laminin-beta3 and fibronectin. J Virol 78(18):10045–10053

    PubMed  CAS  Google Scholar 

  110. Terao Y, Kawabata S, Kunitomo E, Nakagawa I, Hamada S (2002) Novel laminin-binding protein of Streptococcus pyogenes, Lbp, is involved in adhesion to epithelial cells. Infect Immun 70(2):993–997

    PubMed  CAS  Google Scholar 

  111. Cameron CE, Brouwer NL, Tisch LM, Kuroiwa JM (2005) Defining the interaction of the Treponema pallidum adhesin Tp0751 with laminin. Infect Immun 73(11):7485–7494

    PubMed  CAS  Google Scholar 

  112. Marroquin-Quelopana M, Oyama S Jr, Aguiar Pertinhez T, Spisni A, Aparecida Juliano M, Juliano L, Colli W, Alves MJ (2004) Modeling the Trypanosoma cruzi Tc85-11 protein and mapping the laminin-binding site. Biochem Biophys Res Commun 325(2):612–618

    PubMed  CAS  Google Scholar 

  113. Yan HH, Cheng CY (2006) Laminin alpha3 forms a complex with beta3 and gamma3 chains that serves as the ligand for alpha6beta1-integrin at the apical ectoplasmic specialization in adult rat testes. J Biol Chem 281(25):17286–17303

    PubMed  CAS  Google Scholar 

  114. Forsberg E, Ek B, Engstrom A, Johansson S (1994) Purification and characterization of integrin alpha 9 beta 1. Exp Cell Res 213(1):183–190

    PubMed  CAS  Google Scholar 

  115. Doi et al (2002) Recombinant human laminin-10 (alpha5beta1gamma1): production, purification, and migration promoting activity on vascular endothelial cells. J Biol Chem 277(15):12741–12748

    PubMed  CAS  Google Scholar 

  116. Nishimune H, Sanes JR, Carlson SS (2004) A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432(7017):580–587

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Schéele.

Additional information

Peter Ekblom, deceased December 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schéele, S., Nyström, A., Durbeej, M. et al. Laminin isoforms in development and disease. J Mol Med 85, 825–836 (2007). https://doi.org/10.1007/s00109-007-0182-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0182-5

Keywords

Navigation