Skip to main content

Advertisement

Log in

Nuclear lamina remodelling and its implications for human disease

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The intermediate filament A- and B-type lamins are key architectural components of the nuclear lamina, a proteinaceous meshwork that lies underneath the inner nuclear membrane. In the past decade, many different monogenic human diseases have been linked to mutations in various components of the nuclear lamina. Mutations in LMNA (encoding lamin A and C) cause a variety of human diseases, collectively called laminopathies. These include cardiomyopathies, muscular dystrophies, lipodystrophies and progeroid syndromes. In addition, elevated levels of lamin B1, attributable to genomic duplications of the LMNB1 locus, cause adult-onset autosomal dominant leukodystrophy. The molecular mechanism(s) enabling the mutations and perturbations of the nuclear lamina to give rise to such a wide variety of diseases that affect various tissues remains unclear. The composition of the nuclear lamina changes dynamically during development, between cell types and even within the same cell during differentiation and ageing. Here, we discuss the functional and cellular aspects of lamina remodelling and their implications for the tissue-specific nature of laminopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A 89:10114–10118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson DJ, Hetzer MW (2007) Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat Cell Biol 9:1160–1166

    Article  CAS  PubMed  Google Scholar 

  • Anderson DJ, Hetzer MW (2008) Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation. J Cell Biol 182:911–924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barascu A, Le Chalony C, Pennarun G, Genet D, Imam N, Lopez B, Bertrand P (2012) Oxidative stress induces an ATM-independent senescence pathway through p38 MAPK-mediated lamin B1 accumulation. EMBO J 31:1080–1094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Batsios P, Peter T, Baumann O, Stick R, Meyer I, Gräf R (2012) A lamin in lower eukaryotes? Nucleus 3:237–243

    Article  PubMed Central  PubMed  Google Scholar 

  • Belt EJ, Fijneman RJ, Berg EG van den, Bril H, Delis-van Diemen PM, Tijssen M, Essen HF van, Lange-de Klerk ES de, Beliën JA, Stockmann HB, Meijer S, Meijer GA (2011) Loss of lamin A/C expression in stage II and III colon cancer is associated with disease recurrence.Eur J Cancer 47:1837–1845

  • Bengtsson E, Malm P (2014) Screening for cervical cancer using automated analysis of PAP-smears. Comput Math Methods Med 2014:842037

    Article  PubMed Central  PubMed  Google Scholar 

  • Benson EK, Lee SW, Aaronson S (2010) Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence. J Cell Sci 123:2605–2612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broers JL, Machiels BM, Kuijpers HJ, Smedts F, Kieboom R van den, Raymond Y, Ramaekers FC (1997) A- and B-type lamins are differentially expressed in normal human tissues. Histochem Cell Biol 107:505–517

  • Broers JLV, Kuijpers HJ, Ostlund C, Worman HJ, Endert J, Ramaekers FC (2005) Both lamin A and lamin C mutations cause lamina instability as well as loss of internal nuclear lamin organization. Exp Cell Res 304:582–592

    Article  CAS  PubMed  Google Scholar 

  • Bru T, Clarke C, McGrew MJ, Sang HM, Wilmut I, Blow JJ (2008) Rapid induction of pluripotency genes after exposure of human somatic cells to mouse ES cell extracts. Exp Cell Res 314:2634–2642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burke B, Stewart CL (2014) Functional architecture of the cell’s nucleus in development, aging, and disease. Curr Top Dev Biol 109:1–52

    PubMed  Google Scholar 

  • Buxboim A, Swift J, Irianto J, Spinler KR, Dingal PC, Athirasala A, Kao YR, Cho S, Harada T, Shin JW, Discher DE (2014) Matrix elasticity regulates lamin A, C phosphorylation and turnover with feedback to actomyosin. Curr Biol 24:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Camozzi D, Pignatelli S, Valvo C, Lattanzi G, Capanni C, Dal Monte P, Landini MP (2008) Remodelling of the nuclear lamina during human cytomegalovirus infection: role of the viral proteins pUL50 and pUL53. J Gen Virol 89:731–740

    Article  CAS  PubMed  Google Scholar 

  • Canela A, Vera E, Klatt P, Blasco M (2007) High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci U S A 104:5300–5305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Capell BC, Erdos MR, Madigan JP, Fiordalisi JJ, Varga R, Conneely KN, Gordon LB, Der CJ, Cox AD, Collins FS (2005) Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 102:12879–12884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Capo-chichi CD, Cai KQ, Simpkins F, Ganjei-Azar P, Godwin AK, Xu XX (2011a) Nuclear envelope structural defects cause chromosomal numerical instability and aneuploidy in ovarian cancer. BMC Med 9:28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Capo-chichi CD, Cai KQ, Smedberg J, Ganjei-Azar P, Godwin AK, Xu XX (2011b) Loss of A-type lamin expression compromises nuclear envelope integrity in breast cancer. Chin J Cancer 30:415–425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ciska M, Moreno Diaz de la Espina S (2013) NMCP/LINC proteins: putative lamin analogs in plants? Plant Signal Behav 8:e26669

    Article  PubMed Central  PubMed  Google Scholar 

  • Constantinescu D, Gray HL, Sammak PJ, Schatten GP, Csoka AB (2006) Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24:177–185

    Article  CAS  PubMed  Google Scholar 

  • Couzin-Frankel J (2012) Medicine. Drug trial offers uncertain start in race to save children with progeria. Science 337:1594–1595

    Article  PubMed  Google Scholar 

  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  PubMed  Google Scholar 

  • De Las Heras JI, Batrakou DG, Schirmer EC (2013) Cancer biology and the nuclear envelope: a convoluted relationship. Semin Cancer Biol 23:125–137

    Article  PubMed  Google Scholar 

  • De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Lévy N (2003) Lamin a truncation in Hutchinson-Gilford progeria. Science 300:5

    Article  Google Scholar 

  • Decker ML, Chavez E, Vulto I, Lansdorp PM (2009) Telomere length in Hutchinson-Gilford progeria syndrome. Mech Ageing Dev 130:377–383

    Article  CAS  PubMed  Google Scholar 

  • Dreesen O, Chojnowski A, Ong PF, Zhao TY, Common JE, Lunny D, Lane EB, Lee SJ, Vardy L, Stewart CL, Colman A (2013a) Lamin B1 fluctuations have differential effects on cellular proliferation and senescence. J Cell Biol 200:605–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dreesen O, Ong PF, Chojnowski A, Colman A (2013b) The contrasting roles of lamin B1 in cellular aging and human disease. Nucleus 4:283–290

    Article  PubMed Central  PubMed  Google Scholar 

  • DuBois KN, Alsford S, Holden JM, Buisson J, Swiderski M, Bart JM, Ratushny AV, Wan Y, Bastin P, Barry JD, Navarro M, Horn D, Aitchison JD, Rout MP, Field MC (2012) NUP-1 is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol 10:e1001287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dugas JC, Tai YC, Speed TP, Ngai J, Barres B (2006) Functional genomic analysis of oligodendrocyte differentiation. J Neurosci 26:10967–10983

    Article  CAS  PubMed  Google Scholar 

  • Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293–298

    Article  CAS  PubMed  Google Scholar 

  • Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb JR, Bickmore W (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 4:e1000039

    Article  PubMed Central  PubMed  Google Scholar 

  • Fong LG, Ng JK, Lammerding J, Vickers TA, Meta M, Coté N, Gavino B, Qiao X, Chang SY, Young SR, Yang SH, Stewart CL, Lee RT, Bennett CF, Bergo MO, Young SG (2006) Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J Clin Invest 116:743–752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freund A, Laberge R, Demaria M, Campisi J (2012) Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 23:2066–2075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Furukawa K, Hotta Y (1993) cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J 12:97–106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Furukawa K, Inagaki H, Hotta Y (1994) Identification and cloning of an mRNA coding for a germ cell-specific A-type lamin in mice. Exp Cell Res 212:426–430

    Article  CAS  PubMed  Google Scholar 

  • Georgatos SD, Pyrpasopoulou A, Theodoropoulos P (1997) Nuclear envelope breakdown in mammalian cells involves stepwise lamina disassembly and microtubule-drive deformation of the nuclear membrane. J Cell Sci 110:2129–2140

    CAS  PubMed  Google Scholar 

  • Gerace L, Blobel G (1980) The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell 19:277–287

    Article  CAS  PubMed  Google Scholar 

  • Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, Gruenbaum Y, Khuon S, Mendez M, Varga R, Collins FS (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 101:8963–8968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • González-Granado JM, Silvestre-Roig C, Rocha-Perugini V, Cibrián D, Morlino G, Blanco-Berrocal M, Osorio G, Freije JMP, López-Otín C, Sánchez-Madrid F, Andrés V (2014) Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci Signal 7:ra37

    Article  PubMed Central  PubMed  Google Scholar 

  • Gordon LB, Massaro J, D’Agostino RB, Campbell SE, Brazier J, Brown WT, Kleinman ME, Kieran MW (2014) Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome. Circulation 130:27–34

    Article  CAS  PubMed  Google Scholar 

  • Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, Klein A de, Wessels L, Laat W de, Steensel B van (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951

  • Guilly MN, Kolb JP, Gosti F, Godeau F, Courvalin JC (1990) Lamins A and C are not expressed at early stages of human lymphocyte differentiation. Exp Cell Res 189:145–147

    Article  CAS  PubMed  Google Scholar 

  • Güttinger S, Laurell E, Kutay U (2009) Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 10:178–191

    Article  PubMed  Google Scholar 

  • Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 114:4557–4565

    CAS  PubMed  Google Scholar 

  • Heng MY, Lin S, Verret L, Huang Y, Kamiya S, Padiath QS, Tong Y, Palop JJ, Huang EJ, Ptáček LJ, Fu YH (2013) Lamin B1 mediates cell-autonomous neuropathology in a leukodystrophy mouse model. J Clin Invest 123:2719–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ivanov A, Pawlikowski J, Manoharan I, Tuyn J van, Nelson DM, Rai TS, Shah PP, Hewitt G, Korolchuk VI, Passos JF, Wu H, Berger SL, Adams PD (2013) Lysosome-mediated processing of chromatin in senescence. J Cell Biol 202:129–143

  • Jung HJ, Coffinier C, Choe Y, Beigneux AP, Davies BSJ, Yang SH, Barnes RH, Hong J, Sun T, Pleasure SJ, Young SG, Fong LG (2012) Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc Natl Acad Sci U S A 109:E423–E431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung HJ, Tu Y, Yang SH, Tatar A, Nobumori C, Wu D, Young SG, Fong LG (2014) New Lmna knock-in mice provide a molecular mechanism for the “segmental aging” in Hutchinson-Gilford progeria syndrome. Hum Mol Genet 23:1506–1515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim Y, Zheng Y (2013) Generation and characterization of a conditional deletion allele for Lmna in mice. Biochem Biophys Res Commun 440:8–13

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Sharov AA, McDole K, Cheng M, Hao H, Fan C, Gaiano N, Ko MS, Zheng Y (2011) Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells. Science 334:1706–1710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kind J, Pagie L, Ortabozkoyun H, Boyle S, Vries SS de, Janssen H, Amendola M, Nolen LD, Bickmore W, Steensel B van (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153:178–192

  • Kong L, Schäfer G, Bu H, Zhang Y, Zhang Y, Klocker H (2012) Lamin A/C protein is overexpressed in tissue-invading prostate cancer and promotes prostate cancer cell growth, migration and invasion through the PI3K/AKT/PTEN pathway. Carcinogenesis 33:751–759

    Article  CAS  PubMed  Google Scholar 

  • Krüger A, Batsios P, Baumann O, Luckert E, Schwarz H, Stick R, Meyer I, Gräf R (2012) Characterization of NE81, the first lamin-like nucleoskeleton protein in a unicellular organism. Mol Biol Cell 23:360–370

    Article  PubMed Central  PubMed  Google Scholar 

  • Kubben N, Voncken JW, Konings G, Weeghel M van, Hoogenhof MM van den, Gijbels M, Erk A van, Schoonderwoerd K, Bosch B van den, Dahlmans V, Calis C, Houten SM, Misteli T, Pinto YM (2011) Post-natal myogenic and adipogenic developmental: defects and metabolic impairment upon loss of A-type lamins. Nucleus 2:195–207

  • Kudlow BA, Stanfel MN, Burtner CR, Johnston ED, Kennedy BK (2008) Suppression of proliferative defects associated with processing-defective lamin A mutants by hTERT or inactivation of p53. Mol Biol Cell 19:5238–5248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larrieu D, Britton S, Demir M, Rodriguez R, Jackson SP (2014) Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science 344:527–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lehner CF, Stick R, Eppenberger HM, Nigg E (1987) Differential expression of nuclear lamin proteins during chicken development. J Cell Biol 105:577–587

    Article  CAS  PubMed  Google Scholar 

  • Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A, Bally-Cuif L (2008) MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci 11:641–648

    Article  CAS  PubMed  Google Scholar 

  • Lin S-T, Fu Y (2009) miR-23 regulation of lamin B1 is crucial for oligodendrocyte development and myelination. Dis Model Mech 2:178–188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang J, Li KM, Chau PY, Chen DJ, Pei D, Pendas AM, Cadiñanos J, López-Otín C, Tse HF, Hutchison C, Chen J, Cao Y, Cheah KS, Tryggvason K, Zhou Z (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11:780–785

  • Liu G-H, Barkho BZ, Ruiz S, Diep D, Qu J, Yang S-L, Panopoulos AD, Suzuki K, Kurian L, Walsh C, Thompson J, Boue S, Fung HL, Sancho-Martinez I, Zhang K, Yates J 3rd, Izpisua Belmonte JC (2011) Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472:221–225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Rusinol A, Sinensky M, Wang Y, Zou Y (2006) DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A. J Cell Sci 119:4644–4649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Machiels BM, Zorenc HG, Endert JM, Kuijpers HJ, Eys GJ van, Ramaekers FC, Broers JL (1996) An alternative splicing product of the lamin A/C gene lacks exon 10. J Biol Chem 271:9249–9253

  • Mall M, Walter T, Gorjánácz M, Davidson IF, Nga Ly-Hartig TB, Ellenberg J, Mattaj IW (2012) Mitotic lamin disassembly is triggered by lipid-mediated signaling. J Cell Biol 198:981–990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McKenna T, Rosengardten Y, Viceconte N, Baek J-H, Grochová D, Eriksson M (2014) Embryonic expression of the common progeroid lamin A splice mutation arrests postnatal skin development. Aging Cell 13:292–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melcer S, Gruenbaum Y, Krohne G (2007) Invertebrate lamins. Exp Cell Res 313:2157–2166

    Article  CAS  PubMed  Google Scholar 

  • Moir RD, Montag-Lowy M, Goldman RD (1994) Dynamic properties of nuclear lamins: lamin B is associated with sites of DNA replication. J Cell Biol 125:1201–1212

    Article  CAS  PubMed  Google Scholar 

  • Moss SF, Krivosheyev V, Souza A de, Chin K, Gaetz HP, Chaudhary N, Worman HJ, Holt PR (1999) Decreased and aberrant nuclear lamin expression in gastrointestinal tract neoplasms. Gut 45:723–729

  • Motsch I, Kaluarachchi M, Emerson LJ, Brown C, Brown SC, Dabauvalle MC, Ellis J (2005) Lamins A and C are differentially dysfunctional in autosomal dominant Emery-Dreifuss muscular dystrophy. Eur J Cell Biol 84:765–781

    Article  CAS  PubMed  Google Scholar 

  • Muranyi W, Haas J, Wagner M, Krohne G, Koszinowski UH (2002) Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science 297:854–857

    Article  CAS  PubMed  Google Scholar 

  • Musich R, Zou Y, Musich PR (2009) Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A. Aging (Albany N.Y.) 1:28–37

    CAS  Google Scholar 

  • Newport JW, Wilson KL, Dunphy WG (1990) A lamin-independent pathway for nuclear envelope assembly. J Cell Biol 111:2247–2259

    Article  CAS  PubMed  Google Scholar 

  • Nissan X, Blondel S, Navarro C, Maury Y, Denis C, Girard M, Martinat C, De Sandre-Giovannoli A, Levy N, Peschanski M (2012) Unique preservation of neural cells in Hutchinson-Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA. Cell Rep 2:1–9

    Article  CAS  PubMed  Google Scholar 

  • Park R, Baines JD (2006) Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B. J Virol 80:494–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peter A, Stick R (2012) Evolution of the lamin protein family: what introns can tell. Nucleus 3:44–59

    Article  PubMed  Google Scholar 

  • Reddy KL, Zullo JM, Bertolino E, Singh H (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452:243–247

    Article  CAS  PubMed  Google Scholar 

  • Röber RA, Weber K, Osborn M (1989) Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105:365–378

    PubMed  Google Scholar 

  • Röber RA, Sauter H, Weber K, Osborn M (1990) Cells of the cellular immune and hemopoietic system of the mouse lack lamins A/C: distinction versus other somatic cells. J Cell Sci 95:587–598

    PubMed  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence.J Cell Biol 192:547-556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rowat AC, Jaalouk DE, Zwerger M, Ung WL, Eydelnant I, Olins DE, Olins AL, Herrmann H, Weitz D, Lammerding J (2013) Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J Biol Chem 288:8610–8618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sadaie M, Salama R, Carroll T, Tomimatsu K, Chandra T, Young AR, Narita MM, Pérez-Mancera P, Bennett DC, Chong H, Kimura H, Narita M (2013) Redistribution of the lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev 27:1800–1808

  • Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med 11:440–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shah PP, Donahue G, Otte GL, Capell BC, Nelson DM, Cao K, Aggarwala V, Cruickshanks H, Rai TS, McBryan T, Gregory BD, Adams PD, Berger SL (2013) Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev 27:1787–1799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sheehan M, Mills D, Sleeman M, Laskey R, Blow JJ (1988) Steps in the assembly of replication-competent nuclei in a cell-free system from Xenopus eggs. J Cell Biol 106:1–12

    Article  CAS  PubMed  Google Scholar 

  • Shevelyov YY, Lavrov S, Mikhaylova LM, Nurminsky ID, Kulathinal RJ, Egorova KS, Rozovsky YM, Nurminsky DI (2009) The B-type lamin is required for somatic repression of testis-specific gene clusters. Proc Natl Acad Sci U S A 106:3282–3287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimi T, Butin-Israeli V, Adam SA, Hamanaka RB, Goldman AE, Lucas CA, Shumaker DK, Kosak ST, Chandel NS, Goldman RD (2011) The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev 25:2579–2593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, Herrmann H, Blum H, Engelkamp D, Stewart CL, Leonhardt H, Joffe B (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152:584–598

    Article  CAS  PubMed  Google Scholar 

  • Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147:913–920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki N, Del Villar K, Tamanoi F (1998) Farnesyltransferase inhibitors induce dramatic morphological changes of KNRK cells that are blocked by microtubule interfering agents. Proc Natl Acad Sci U S A 95:10499–10504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104

    Article  PubMed Central  PubMed  Google Scholar 

  • Sylvius N, Hathaway A, Boudreau E, Gupta P, Labib S, Bolongo PM, Rippstein P, McBride H, Bilinska ZT, Tesson F (2008) Specific contribution of lamin A and lamin C in the development of laminopathies. Exp Cell Res 314:2362–2375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takai H, Smogorzewska A, Lange T de (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556

  • Toth JI, Yang SH, Qiao X, Beigneux AP, Gelb MH, Moulson CL, Miner JH, Young SG, Fong LG (2005) Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc Natl Acad Sci U S A 102:12873–12878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsai MY, Wang S, Heidinger JM, Shumaker DK, Adam SA, Goldman RD, Zheng Y (2006) A mitotic lamin B matrix induced by RanGTP required for spindle assembly.Science 311:1887–1893

    Article  CAS  PubMed  Google Scholar 

  • Vergnes L, Péterfy M, Bergo MO, Young SG, Reue K (2004) Lamin B1 is required for mouse development and nuclear integrity. Proc Natl Acad Sci U S A 101:10428–10433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verstraeten VLRM, Peckham LA, Olive M, Capell BC, Collins FS, Nabel EG, Young SG, Fong LG, Lammerding J (2011) Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect. Proc Natl Acad Sci U S A 108:4997–5002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, Zglinicki T von (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8:311–323

  • Willis ND, Cox TR, Rahman-Casañs SF, Smits K, Przyborski SA, Brandt P van den, Engeland M van, Weijenberg M, Wilson RG, de Bruïne A, Hutchison CJ (2008)Lamin A/C is a risk biomarker in colorectal cancer.PLoS One 3:e2988

  • Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ, Friedl P (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201:1069–1084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Worman HJ, Bonne G (2007) “Laminopathies”: a wide spectrum of human diseases. Exp Cell Res 313:2121–2133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Z, Wu L, Weng D, Xu D, Geng J, Zhao F (2009) Reduced expression of lamin A/C correlates with poor histological differentiation and prognosis in primary gastric carcinoma. J Exp Clin Cancer Res 28:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, Mutalif RA, Navasankari R, Zhang Y, Tse HF, Stewart CL, Colman A (2011) A human iPSC model of Hutchinson Gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8:31–45

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Dreesen.

Additional information

The authors acknowledge funding from the Agency of Science, Technology and Research A*STAR, Singapore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chojnowski, A., Ong, P.F. & Dreesen, O. Nuclear lamina remodelling and its implications for human disease. Cell Tissue Res 360, 621–631 (2015). https://doi.org/10.1007/s00441-014-2069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2069-4

Keywords

Navigation