Skip to main content

Advertisement

Log in

Downregulation of Skp2 and p27/Kip1 synergistically induces apoptosis in T98G glioblastoma cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

S-Phase kinase associated protein (Skp) 2 is an F-box protein required for substrate recognition of the SCFSkp2 ubiquitin ligase complex. Skp2 is often overexpressed in transformed cells and in various types of tumors. Downregulation or inhibition of Skp2 inhibits growth of breast cancer cells and small-cell lung carcinoma cells. We downregulated Skp2 in T98G glioblastoma cells using small interfering RNA (siRNA). Downregulation induced p27 and caused growth arrest and apoptosis. Downregulation of both Skp2 and p27 increased apoptosis synergistically. Cyclin E levels and cyclin E-CDK2 kinase activity increased dramatically when both Skp2 and p27 were downregulated. Coincidently, Bcl-2 but not Bcl-xL expression decreased, and caspase-3 was activated. Inhibition of cyclin E-CDK2 kinase activity by forced expression of p21 reversed these effects. Moreover, stable expression of Bcl-2 also abrogated apoptosis induced by downregulation of Skp2 and p27. We suggest that Skp2 in tumor cells suppresses apoptosis through Bcl-2 expression, potentially through regulation of cyclin E-CDK2 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Br-dU :

5-Bromo-2-deoxyuridine

CDK :

Cyclin-dependent kinase

CMV :

Cytomegalovirus

DTT :

Dithiothreitol

FBS :

Fetal bovine serum

GFP :

Green fluorescent protein

PAGE :

Polyacrylamide gel electrophoresis

PI :

Propidium iodide

SDS :

Sodium dodecyl sulfate

siRNA :

Small interfering RNA

Skp :

S-phase kinase associated protein

References

  1. Zhang H, Kobayashi R, Galaktionov K, Beach D (1995) p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell 82:915–925

    Article  CAS  PubMed  Google Scholar 

  2. Lisztwan J, Marti A, Sutterluty H, Gstaiger M, Wirbelauer C, Krek W (1998) Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45 (SKP2): evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway. EMBO J 17:368–383

    Article  CAS  PubMed  Google Scholar 

  3. Harper JW (2001) Protein destruction: adapting roles for Cks proteins. Curr Biol 11:R431–435

    Article  CAS  PubMed  Google Scholar 

  4. Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193–199

    Article  CAS  PubMed  Google Scholar 

  5. Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A (2003) Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 278:25752–25757

    Article  CAS  PubMed  Google Scholar 

  6. Tedesco D, Lukas J, Reed SI (2002) The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF (Skp2). Genes Dev 16:2946–2957

    Article  CAS  PubMed  Google Scholar 

  7. Marti A, Wirbelauer C, Scheffner M, Krek W (1999) Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1:14–19

    Google Scholar 

  8. Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, Shirane M, Tsunematsu R, Tsukiyama T, Ishida N, Kitagawa M, Nakayama K, Hatakeyama S (2000) Targeted disruption of Skp2 results in accumulation of cyclin E and p27 (Kip1), polyploidy and centrosome overduplication EMBO J 19:2069–2081

  9. Mendez J, Zou-Yang XH, Kim SY, Hidaka M, Tansey WP, Stillman B (2002) Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol Cell 9:481–491

    Article  CAS  PubMed  Google Scholar 

  10. Bloom J, Pagano M (2003) Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol 13:41–47

    Article  CAS  PubMed  Google Scholar 

  11. Latres E, Chiarle R, Schulman B, Pellicer A, Inghirami G, Pagano M (2001) Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci USA 98:2515–2520

    Google Scholar 

  12. Shigemasa K, Gu L, O’Brien TJ, Ohama K (2003) Skp2 overexpression is a prognostic factor in patients with ovarian adenocarcinoma. Clin Cancer Res 9:1756–1763

    CAS  PubMed  Google Scholar 

  13. Kudo Y, Kitajima S, Sato S, Miyauchi M, Ogawa I, Takata T (2001) High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res 61:7044–7047

    CAS  PubMed  Google Scholar 

  14. Schiffer D, Cavalla P, Fiano V, Ghimenti C, Piva R (2002) Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and Western blot. Neurosci Lett 328:125–128

    Article  CAS  PubMed  Google Scholar 

  15. Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, Krek W (2002) Function of human Skp2 as an oncogene. Proc Natl Acad Sci USA 98:5043–5048

    Google Scholar 

  16. Nelsen CJ, Hansen LK, Rickheim DG, Chen C, Stanley MW, Krek W, Albrecht JH (2001) Induction of hepatocyte proliferation and liver hyperplasia by the targeted expression of cyclin E and skp2. Oncogene 20:1825–1831

    Article  CAS  PubMed  Google Scholar 

  17. Masuda TA, Inoue H, Sonoda H, Mine S, Yoshikawa Y, Nakayama K, Nakayama K, Mori M (2002) Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res 62:3819–3825

    CAS  PubMed  Google Scholar 

  18. Signoretti S, Di Marcotullio L, Richardson A, Ramaswamy S, Isaac B, Rue M, Monti F, Loda M, Pagano M (2002) Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest 110:633–641

    Article  CAS  PubMed  Google Scholar 

  19. Yokoi S, Yasui K, Saito-Ohara F, Koshikawa K, Iizasa T, Fujisawa T, Terasaki T, Horii A, Takahashi T, Hirohashi S, Inazawa JA (2002) Novel target gene, SKP2, within the 5p13 amplicon that is frequently detected in small cell lung cancers. Am J Pathol 161:207–216

    CAS  PubMed  Google Scholar 

  20. Hara T, Kamura T, Nakayama K, Oshikawa K, Hatakeyama S (2001) Degradation of p27 (Kip1) at the G0–G1 transition mediated by a Skp2-independent ubiquitination pathway. J Biol Chem 276:48937–48943

    Article  CAS  PubMed  Google Scholar 

  21. Philipp-Staheli J, Payne SR, Kemp CJ (2001) p27 (Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res 264:148–168

    Article  CAS  PubMed  Google Scholar 

  22. Mazumder S, Gong B, Almasan A (2000) Cyclin E induction by genotoxic stress leads to apoptosis of hematopoietic cells. Oncogene 19:2828–2835

    Article  CAS  PubMed  Google Scholar 

  23. Yin MB, Guo B, Panadero A, Frank C, Wrzosek C, Slocum HK, Rustum YM (1999) Cyclin E-cdk2 activation is associated with cell cycle arrest and inhibition of DNA replication induced by the thymidylate synthase inhibitor Tomudex. Exp Cell Res 247:189–199

    Article  CAS  PubMed  Google Scholar 

  24. Leonce S, Perez V, Lambel S, Peyroulan D, Tillequin F, Michel S, Koch M, Pfeiffer B, Atassi G, Hickman JA, Pierre A (2001) Induction of cyclin E and inhibition of DNA synthesis by the novel acronycine derivative S23906–1 precede the irreversible arrest of tumor cells in S phase leading to apoptosis. Mol Pharmacol 60:1383–1391

    CAS  PubMed  Google Scholar 

  25. Hiromura K, Pippin, JW, Fero ML, Roberts JM, Shankland SJ (1999) Modulation of apoptosis by the cyclin-dependent kinase inhibitor p27 (Kip1). J Clin Invest 103:597–604

    CAS  PubMed  Google Scholar 

  26. Gartel AL, Tyner AL (2002) The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1:639–649

    CAS  PubMed  Google Scholar 

  27. Dhillon NK, Mudryj M (2003) Cyclin E overexpression enhances cytokine-mediated apoptosis in MCF7 breast cancer cells. Genes Immun 4:336–342

    Article  CAS  PubMed  Google Scholar 

  28. Wu X, He Y, Falo LD Jr, Hui KM, Huang L (2001) Regression of human mammary adenocarcinoma by systemic administration of a recombinant gene encoding the hFlex-TRAIL fusion protein. Mol Ther 3:368−374

    Article  CAS  PubMed  Google Scholar 

  29. Nagane M, Huang HJ, Cavenee WK (2001) The potential of TRAIL for cancer chemotherapy. Apoptosis 6:191−197

    Article  CAS  PubMed  Google Scholar 

  30. Nalepa G, Wade Harper J (2003) Therapeutic anti-cancer targets upstream of the proteasome. Cancer Treat Rev 1:49–57

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank Dr. Tetsu and Dr. Stokoe for critical advice. We also thank Dr. Evan and Dr. Gump for their reagents. We thank members of the UCSF Comprehensive Cancer Center Cytometry Core facilities for their helpful support. This work was supported by a grant from Daiichi Pharmaceuticals, Tokyo, Japan, for the Daiichi Cancer Research Program at UCSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank McCormick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., McCormick, F. Downregulation of Skp2 and p27/Kip1 synergistically induces apoptosis in T98G glioblastoma cells. J Mol Med 83, 296–307 (2005). https://doi.org/10.1007/s00109-004-0611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0611-7

Keywords

Navigation