Skip to main content
Log in

The Ro 60 kDa autoantigen: insights into cellular function and role in autoimmunity

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

An RNA-binding protein, the Ro 60 kDa autoantigen, is a major target of the immune response in patients suffering from two systemic rheumatic diseases, systemic lupus erythematosus and Sjogren’s syndrome. In lupus patients, anti-Ro antibodies are associated with photosensitive skin lesions and with neonatal lupus, a syndrome in which mothers with anti-Ro antibodies give birth to children with photosensitive skin lesions and a cardiac conduction defect, third degree heart block. In vertebrate cells, the Ro protein binds small RNAs of unknown function known as Y RNAs. Although the cellular function of Ro has long been mysterious, recent studies have implicated Ro in two distinct processes: small RNA quality control and the enhancement of cell survival following exposure to ultraviolet irradiation. Most interestingly, mice lacking the Ro protein develop an autoimmune syndrome that shares some features with systemic lupus erythematosus in patients, suggesting that the normal function of Ro may be important for the prevention of this autoimmune disease. In this review, we summarize recent progress towards understanding the role of the Ro 60 kDa protein and discuss whether the cellular function of Ro could be related to certain manifestations of lupus in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

RNP :

Ribonucleoprotein

RRM :

RNA recognition motif

SCLE :

Subacute cutaneous lupus erythematosus

SLE :

Systemic lupus erythematosus

snRNP :

Small nuclear ribonucleoprotein

SS :

Sjogren’s syndrome

UV :

Ultraviolet

VWFA :

von Willebrand factor A

References

  1. von Muhlen CA, Tan EM (1995) Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin Arthritis Rheum 24:323–358

    PubMed  Google Scholar 

  2. Provost TT, Watson R, Simmons-O’Brien E (1996) Significance of the anti-Ro (SS-A) antibody in evaluation of patients with cutaneous manifestations of a connective tissue disease. J Am Acad Dermatol 35:147–169

    CAS  PubMed  Google Scholar 

  3. Patel P, Werth V (2002) Cutaneous lupus erythematosus: a review. Dermatol Clin 20:373–385

    PubMed  Google Scholar 

  4. Lee LA (2001) Neonatal lupus: clinical features, therapy, and pathogenesis. Curr Rheumatol Rep 3:391–395

    CAS  PubMed  Google Scholar 

  5. Lerner MR, Boyle JA, Hardin JA, Steitz JA (1981) Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science 211:400–402

    CAS  PubMed  Google Scholar 

  6. Hendrick JP, Wolin SL, Rinke J, Lerner MR, Steitz JA (1981) Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol Cell Biol 1:1138–1149

    CAS  PubMed  Google Scholar 

  7. O’Brien CA, Wolin SL (1994) A possible role for the 60 kDa Ro autoantigen in a discard pathway for defective 5S ribosomal RNA precursors. Genes Dev 8:2891–2903

    CAS  PubMed  Google Scholar 

  8. Shi H, O’Brien CA, Van Horn DJ, Wolin SL (1996) A misfolded form of 5S rRNA is associated with the Ro and La autoantigens. RNA 2:769–784

    CAS  PubMed  Google Scholar 

  9. Labbe JC, Hekimi S, Rokeach LA (1999) The levels of the RoRNP-associated Y RNA are dependent upon the presence of ROP-1, the Caenorhabditis elegans Ro60 protein. Genetics 151:143–150

    CAS  PubMed  Google Scholar 

  10. Chen X, Smith JD, Shi H, Yang DD, Flavell RA, Wolin SL (2003) The Ro autoantigen binds misfolded U2 small nuclear RNAs and assists mammalian cell survival following ultraviolet irradiation. Curr Biol 13:2206–2211

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, Quinn AM, Wolin SL (2000) Ro ribonucleoproteins contribute to the resistance of Deinococcus radiodurans to ultraviolet irradiation. Genes Dev 14:777–782

    CAS  PubMed  Google Scholar 

  12. Xue D, Shi H, Smith JD, Chen X, Noe DA, Cedervall T, Yang DD, Eynon E, Brash DE, Kashgarian M, Flavell RA, Wolin SL (2003) A lupus-like syndrome develops in mice lacking the Ro 60 kDa protein, a major lupus autoantigen. Proc Natl Acad Sci USA 100:7503–7508

    Article  CAS  PubMed  Google Scholar 

  13. Smith PR, Venables PJ, Williams D, Maini RN (1984) Identification and purification of a 55 kDa polypeptide in Sjogren’s syndrome A antigen. Rheumatol Int 4:135–138

    CAS  PubMed  Google Scholar 

  14. O’Brien CA, Margelot K, Wolin SL (1993) Xenopus Ro ribonucleoproteins: members of an evolutionarily conserved class of cytoplasmic ribonucleoproteins. Proc Natl Acad Sci USA 90:7250–7254

    CAS  PubMed  Google Scholar 

  15. Labbe JC (1995) The Caenorhabditis elegans rop-1 gene encodes the homologue of the human 60 kDa Ro autoantigen. Gene 167:227–231

    Article  CAS  PubMed  Google Scholar 

  16. Van Horn DJ, Eisenberg D, O’Brien CA, Wolin SL (1995) Caenorhabditis elegans embryos contain only one major species of Ro RNP. RNA 1:293–303

    PubMed  Google Scholar 

  17. Wolin SL, Steitz JA (1983) Genes for two small cytoplasmic Ro RNAs are adjacent and appear to be single-copy in the human genome. Cell 32:735–744

    CAS  PubMed  Google Scholar 

  18. Mamula MJ, O’Brien CA, Harley JB, Hardin JA (1989) The Ro ribonucleoprotein particle: induction of autoantibodies and the detection of Ro RNAs among species. Clin Immunol Immunopathol 52:435–446

    CAS  PubMed  Google Scholar 

  19. Pruijn GJM, Wingens PAETM, Peters SLM, Thijssen JPH, van Venrooij WJ (1993) Ro RNP associated Y RNAs are highly conserved among mammals. Biochem Biophys Acta 1216:395–401

    Article  CAS  PubMed  Google Scholar 

  20. Farris AD, O’Brien CA, Harley JB (1995) Y3 is the most conserved small RNA component of Ro ribonucleoprotein complexes in vertebrate species. Gene 154:193–198

    Article  CAS  PubMed  Google Scholar 

  21. Wolin SL, Steitz JA (1984) The Ro small cytoplasmic ribonucleoproteins: identification of the antigenic protein and its binding site on the Ro RNAs. Proc Natl Acad Sci USA 81:1996–2000

    CAS  PubMed  Google Scholar 

  22. van Gelder CWG, Thijssen JPHM, Klaassen ECJ, Sturchler C, Krol A, van Venrooij WJ, Pruijn GJM (1994) Common structural features of the Ro RNP associated hY1 and hY5 RNAs. Nucleic Acids Res 22:2498–2506

    PubMed  Google Scholar 

  23. Farris AD, Koelsch G, Pruijn GJ, van Venrooij WJ, Harley JB (1999) Conserved features of Y RNAs revealed by automated phylogenetic secondary structure analysis. Nucleic Acids Res 27:1070–1078

    Article  CAS  PubMed  Google Scholar 

  24. Teunissen SW, Kruithof MJ, Farris AD, Harley JB, Venrooij WJ, Pruijn GJ (2000) Conserved features of Y RNAs: a comparison of experimentally derived secondary structures. Nucleic Acids Res 28:610–619

    Article  CAS  PubMed  Google Scholar 

  25. Pruijn GJM, Slobbe RL, van Venrooij WJ (1991) Analysis of protein-RNA interactions within Ro ribonucleoprotein complexes. Nucleic Acids Res 19:5173–5180

    CAS  PubMed  Google Scholar 

  26. Green CD, Long KS, Shi H, Wolin SL (1998) Binding of the 60 kDa Ro autoantigen to Y RNAs: evidence for recognition in the major groove of a conserved helix. RNA 4:750–765

    Article  CAS  PubMed  Google Scholar 

  27. Peek R, Pruijn GJM, van der Kemp A, van Venrooij WJ (1993) Subcellular distribution of Ro ribonucleoprotein complexes and their constituents. J Cell Sci 106:929–935

    CAS  PubMed  Google Scholar 

  28. Simons FHM, Pruijn GJM, van Venrooij WJ (1994) Analysis of the intracellular localization and assembly of Ro ribonucleoprotein particles by microinjection into Xenopus laevis oocytes. J Cell Biol 125:981–988

    CAS  PubMed  Google Scholar 

  29. Boire G, Craft J (1990) Human Ro ribonucleoprotein particles: characterization of native structure and stable association with the La polypeptide. J Clin Invest 85:1182–1190

    CAS  PubMed  Google Scholar 

  30. Kelekar A, Saitta MR, Keene JD (1994) Molecular composition of Ro small ribonucleoprotein complexes in human cells. J Clin Invest 93:1637–1644

    CAS  PubMed  Google Scholar 

  31. Fabini G, Rutjes SA, Zimmermann C, Pruijn GJ, Steiner G (2000) Analysis of the molecular composition of Ro ribonucleoprotein complexes. Identification of novel Y RNA-binding proteins. Eur J Biochem 267:2778–2789

    Article  CAS  PubMed  Google Scholar 

  32. Wolin SL, Cedervall T (2002) The La protein. Annu Rev Biochem 71:375–402

    Article  CAS  PubMed  Google Scholar 

  33. Hardin JA (1986) The lupus autoantigens and the pathogenesis of systemic lupus erythematosus. Arthritis Rheum 29:457–460

    CAS  PubMed  Google Scholar 

  34. Tan EM (1989) Antinuclear antibodies: diagnostic markers for autoimmune disease and probes for cell biology. Adv Immunol 44:93–151

    CAS  PubMed  Google Scholar 

  35. Wasicek CA, Reichlin M (1982) Clinical and serological differences between systemic lupus erythematosus patients with antibodies to Ro versus patients with antibodies to Ro and La. J Clin Invest 69:835–843.

    CAS  PubMed  Google Scholar 

  36. Ben-Chetrit E, Chan EKL, Sullivan KF, Tan EM (1988) A 52 kDa protein is a novel component of the SS-A/Ro antigenic particle. J Exp Med 167:1560–1572

    CAS  PubMed  Google Scholar 

  37. Slobbe RL, Pluk W, van Venrooij WJ, Pruijn GJM (1992) Ro ribonucleoprotein assembly in vitro. Identification of RNA-protein and protein-protein interactions. J Mol Biol 227:361–366

    CAS  PubMed  Google Scholar 

  38. Boire G, Gendron M, Monast N, Bastin B, Menard HA (1995) Purification of antigenically intact Ro ribonucleoproteins; biochemical and immunological evidence that the 52 kDa protein is not a Ro protein. Clin Exp Immunol 100:489–498

    CAS  PubMed  Google Scholar 

  39. Wang D, Buyon JP, Zhu W, Chan EK (1999) Defining a novel 75 kDa phosphoprotein associated with SS-A/Ro and identification of distinct human autoantibodies. J Clin Invest 104:1265–1275

    CAS  PubMed  Google Scholar 

  40. Prekeris R, Klumperman J, Scheller RH (2000) A Rab11/Rip11 protein complex regulates apical membrane trafficking via recycling endosomes. Mol Cell 6:1437–1448

    CAS  PubMed  Google Scholar 

  41. Page-McCaw PS, Amonlirdviman K, Sharp PA (1999) PUF60: a novel U2AF65-related splicing activity. RNA 5:1548–1560

    Article  CAS  PubMed  Google Scholar 

  42. Bouffard P, Barbar E, Briere F, Boire G (2000) Interaction cloning and characterization of RoBPI, a novel protein binding to human Ro ribonucleoproteins. RNA 6:66–78

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, He L, Collins I, Ge H, Libutti D, Li J, Egly J-M, Levens D (2000) The FBP interacting repressor targets TFIIH to inhibit activated repression. Mol Cell 5:331–341

    CAS  PubMed  Google Scholar 

  44. Fabini G, Raijmakers R, Hayer S, Fouraux MA, Pruijn GJ, Steiner G (2001) The heterogeneous nuclear ribonucleoproteins I and K interact with a subset of Ro ribonucleoprotein-associated Y RNAs in vitro and in vivo. J Biol Chem 276:20711–20718

    Article  CAS  PubMed  Google Scholar 

  45. Fouraux MA, Bouvet P, Verkaart S, van venrooij WJ, Pruijn GJ (2002) Nucleolin associates with a subset of the human Ro ribonucleoprotein complexes. J Mol Biol 320:475–488

    Article  CAS  PubMed  Google Scholar 

  46. Harrington L, McPhail T, Mar V, Zhou W, Oulton R, Bass MB, Arruda I, Robinson MO (1997) A mammalian telomerase-associated protein. Science 275:973–977

    Article  CAS  PubMed  Google Scholar 

  47. Ramakrishnan S, Sharma HW, Farris AD, Kaufman KM, Harley JB, Collins K, Pruijn GJM, van Venrooij WJ, Martin ML, Narayanan R (1997) Characterization of human telomerase complex. Proc Natl Acad Sci USA 94:10075–10079

    Article  CAS  PubMed  Google Scholar 

  48. Anantharaman V, Koonin EV, Aravind L (2002) Comparative genomics and the evolution of proteins involved in RNA metabolism. Nucleic Acids Res 30:1427–1464

    Article  CAS  PubMed  Google Scholar 

  49. Bateman A, Kickhoefer VA (2003) The TROVE module: a common element in telomerase, Ro and vault ribonucleoproteins. BMC Bioinformatics 4:49

    Article  PubMed  Google Scholar 

  50. Suprenant KA (2002) Vault ribonucleoprotein particles: sarcophagi, gondolas, or safety deposit boxes? Biochemistry 41:14447–14454

    Article  CAS  PubMed  Google Scholar 

  51. Mason DX, Autexier C, Greider CW (2001) Tetrahymena proteins p80 and p95 are not core telomerase components. Proc Natl Acad Sci USA 98:12368–12373

    Article  CAS  PubMed  Google Scholar 

  52. Liu Y, Snow BE, Hande MP, Baerlocher G, Kickhoefer VA, Yeung D, Wakeham A, Itie A, Siderovski DP, Lansdorp PM, Robinson MO, Harrington L (2000) Telomerase-associated protein TEP1 is not essential for telomerase activity or telomere length maintenance in vivo. Mol Cell Biol 20:8178–8184

    Article  CAS  PubMed  Google Scholar 

  53. Whittaker CA, Hynes RO (2002) Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13:3369–3387

    Article  CAS  PubMed  Google Scholar 

  54. Deutscher SL, Harley JB, Keene JD (1988) Molecular analysis of the 60 kDa human Ro ribonucleoprotein. Proc Natl Acad Sci USA 85:9479–9483

    CAS  PubMed  Google Scholar 

  55. Bandziulis RJ, Swanson MS, Dreyfuss G (1989) RNA-binding proteins as developmental regulators. Genes Dev 3:431–437

    CAS  PubMed  Google Scholar 

  56. Query CC, Bentley RC, Keene JD (1989) A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70 kDA U1 snRNP protein. Cell 57:89–101

    CAS  PubMed  Google Scholar 

  57. Glockner FO, Kube M, Bauer M, Teeling H, Lombardo T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomcete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100:8298–8303

    Article  CAS  PubMed  Google Scholar 

  58. Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, Brucker W, Kumar V, Kanasamy J, Keenan L, Bardarov S, Kriakov J, Lawrence JG, Jacobs WRJ, Hendrix RW, Hatfull GF (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182

    CAS  PubMed  Google Scholar 

  59. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    CAS  PubMed  Google Scholar 

  60. Peterson RC, Doering JL, Brown DD (1980) Characterization of two Xenopus somatic 5S DNAs and one minor oocyte-specific 5S DNA. Cell 20:131–141

    CAS  PubMed  Google Scholar 

  61. Forbes DJ, Kirschner MW, Caput D, Dahlberg JE, Lund E (1984) Differential expression of multiple U1 small nuclear RNAs in oocytes and embryos of Xenopus laevis. Cell 38:681–689

    CAS  PubMed  Google Scholar 

  62. Lund E, Kahan B, Dahlberg JE (1985) Differential control of U1 small nuclear RNA expression during mouse development. Science 229:1271–1274

    CAS  PubMed  Google Scholar 

  63. Maquat LE, Carmichael GG (2001) Quality control of mRNA function. Cell 104:173–176

    CAS  PubMed  Google Scholar 

  64. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  Google Scholar 

  65. Labbe JC, Burgess J, Rokeach LA, Hekimi S (2000) ROP-1, an RNA quality-control pathway component, affects Caenorhabditis elegans dauer formation. Proc Natl Acad Sci USA 97:13233–13238

    Article  CAS  PubMed  Google Scholar 

  66. Doudney CO (1968) Ultraviolet light effects on the bacterial cell. Curr Top Microbiol Immunol 46:116–175

    CAS  PubMed  Google Scholar 

  67. Wakeland EK, Liu K, Graham RR, Behrens TW (2001) Delineating the genetic basis of systemic lupus erythematosus. Immunity 15:397–408

    CAS  PubMed  Google Scholar 

  68. Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, Loos M, Pandolfi PP, Walport MJ (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19:56–59

    CAS  PubMed  Google Scholar 

  69. Napirei M, Karsunky H, Zevnik B, Stephan H, Mannherz HG, Moroy T (2000) Features of systemic lupus erythematosus in DNAse1-deficient mice. Nat Genet 25:177–181

    Article  CAS  PubMed  Google Scholar 

  70. Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL, Earp HS, Matsushima GK (2001) Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411:207–211

    Article  CAS  PubMed  Google Scholar 

  71. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  PubMed  Google Scholar 

  72. Chan EK, Tan EM, Ward DC, Matera AG (1994) Human 60 kDa SS-A/Ro ribonucleoprotein autoantigen gene (SSA2) localized to 1q31 by fluorescence in situ hybridization. Genomics 23:298-300

    Article  CAS  PubMed  Google Scholar 

  73. Moser KL, Neas BR, Salmon JE, Yu H, Gray-McGuire C, Asundi N, Bruner GR, Fox J, Kelly J, Henshall S, Bacino D, Dietz M, Hogue R, Koelsch G, Nightingale L, Shaver T, Abdou NI, Albert DA, Carson C, Petri M, Treadwell EL, James JA, Harley JB (1998) Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees. Proc Natl Acad Sci USA 95:14869–14874

    CAS  PubMed  Google Scholar 

  74. Lindqvist AK, Steinsson K, Johanneson B, Kristjansdottir H, Arnasson A, Grondal G, Jonasson I, Magnusson V, Sturfelt G, Truedsson L, Svenungsson E, Lundberg I, Terwilliger JD, Gyllensten UB, Alarcon-Riquelme ME (2000) A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q. J Autoimmun 14:169–178

    Article  CAS  PubMed  Google Scholar 

  75. Johanneson B, Lima G, Von Salome J, Alarcon-Segovia D, Alarcon-Riquelme ME (2002) A major susceptibility locus for systemic lupus erythemathosus maps to chromosome 1q31. Am J Hum Genet 71:1060–1071

    Article  CAS  PubMed  Google Scholar 

  76. Millard TP, Ashton GH, Kondeatis E, Vaughan RW, Hughes GR, Khamashta MA, Hawk JL, McGregor JM, McGrath JA (2002) Human Ro60 (SSA2) genomic organization and sequence alterations, examined in cutaneous lupus erythematosus. Br J Dermatol 146:210–215

    Article  CAS  PubMed  Google Scholar 

  77. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, Harley JB (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349:1526–1533

    Article  CAS  PubMed  Google Scholar 

  78. Alarcon-Segovia D, Ruiz-Arguelles A, Fishbein E (1978) Antibody to nuclear ribonucleoprotein penetrates live human mononuclear cells through Fc receptors. Nature 271:67–69

    CAS  PubMed  Google Scholar 

  79. Golan TD, Gharavi AE, Elkon KB (1993) Penetration of autoantibodies into living epithelial cells. J Invest Dermatol 100:316–322

    CAS  PubMed  Google Scholar 

  80. Yanase K, Smith RM, Cizman B, Foster MH, Peachey LD, Jarett L, Madaio MP (1994) A subgroup of murine monoclonal anti-deoxyribonucleic acid antibodies traverse the cytoplasm and enter the nucleus in a time-and temperature- dependent manner. Lab Invest 71:52–60

    CAS  PubMed  Google Scholar 

  81. Zack DJ, Stempniak M, Wong AL, Taylor C, Weisbart RH (1996) Mechanisms of cellular penetration and nuclear localization of an anti- double strand DNA autoantibody. J Immunol 157:2082–2088

    CAS  PubMed  Google Scholar 

  82. Koscec M, Koren E, Wolfson-Reichlin M, Fugate RD, Trieu E, Targoff IN, Reichlin M (1997) Autoantibodies to ribosomal P proteins penetrate into live hepatocytes and cause cellular dysfunction in culture. J Immunol 159:2033–2041

    CAS  PubMed  Google Scholar 

  83. Abedi-Valugerdi M, Hu H, Moller G (1999) Mercury-induced anti-nucleolar autoantibodies can transgress the membrane of living cells in vivo and in vitro. Int Immunol 11:605–615

    Article  CAS  PubMed  Google Scholar 

  84. Deng SX, Hanson E, Sanz I (2000) In vivo cell penetration and intracellular transport of anti-Sm and anti-La autoantibodies. Int Immunol 12:415–423

    Article  CAS  PubMed  Google Scholar 

  85. Musunuru K, Darnell RB (2001) Paraneoplastic neurologic disease antigens: RNA-binding proteins and signaling proteins in neuronal degeneration. Annu Rev Neurosci 24:239–262

    Article  CAS  PubMed  Google Scholar 

  86. Lee LA, Farris AD (1999) Photosensitivity diseases: cutaneous lupus erythematosus. J Invest Dermatol Symp Proc:73–78

    Google Scholar 

  87. Lee LA, Roberts CM, Frank MB, McCubbin VR, Reichlin M (1994) The autoantibody response to Ro/SSA in cutaneous lupus erythematosus. Arch Dermatol 130:1262–1268

    Article  CAS  PubMed  Google Scholar 

  88. Parodi A, Drosera M, Barbieri L, Rebora A (1998) Counterimmunoelectrophoresis, ELISA and immunoblotting detection of anti-Ro/SSA antibodies in subacute cutaneous lupus erythematosus. A comparative study. Br J Dermatol 138:114–117

    Article  CAS  PubMed  Google Scholar 

  89. Itoh Y, Reichlin M (1992) Autoantibodies to the Ro/SSA antigen are conformation dependent. I. Anti-60 kD antibodies are mainly directed to the native protein; anti-52 kD antibodies are mainly directed to the denatured protein. Autoimmunity 14:57–65

    CAS  PubMed  Google Scholar 

  90. Buyon JP, Clancy RM (2003) Neonatal lupus syndromes. Curr Opin Rheumatol 15:535–541

    Article  CAS  PubMed  Google Scholar 

  91. LeFeber WP, Norris DA, Ryan SR, Huff JC, Lee LA, Kubo M, Boyce ST, Kotzin BL, Weston WL (1984) Ultraviolet light induces binding of antibodies to selected nuclear antigens on cultured human keratinocytes. J Clin Invest 74:1545–1551

    CAS  PubMed  Google Scholar 

  92. Furukawa F, Kashihara-Sawami M, Lyons MB, Norris DA (1990) Binding of antibodies to the extractable nuclear antigens SS-A/Ro and SS-B/La is induced on the surface of human keratinocytes by ultraviolet light (UVL): implications for the pathogenesis of photosensitive cutaneous lupus. J Invest Dermatol 94:77–85

    CAS  PubMed  Google Scholar 

  93. Golan TD, Elkon KB, Gharavi AE, Krueger JG (1992) Enhanced membrane binding of autoantibodies to cultured keratinocytes of systemic lupus erythematosus patients after ultraviolet B/ultraviolet A irradiation. J Clin Invest 90:1067–1076

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Carl Hashimoto, Karin Reinisch, and Elisabetta Ullu for comments on the manuscript. S.L.W. is an Associate Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra L. Wolin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Wolin, S.L. The Ro 60 kDa autoantigen: insights into cellular function and role in autoimmunity. J Mol Med 82, 232–239 (2004). https://doi.org/10.1007/s00109-004-0529-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0529-0

Keywords

Navigation