Medizinische Fehler gehören zu den häufigsten Todesursachen in Industrieländern. Eine nicht zeitgerecht erfolgende therapeutische Konsequenz auf labormedizinische Diagnostik kann die Patientensicherheit gefährden. Im Rahmen des öffentlich geförderten Verbundprojekts AMPEL (Akronym für Analyse- und Meldesystem zur Verbesserung der Patientensicherheit durch Echtzeitintegration von Laborbefunden) wird an der Universitätsmedizin Leipzig ein Werkzeug der digitalen Labormedizin geschaffen, das klinische und labormedizinische Daten in Echtzeit analysiert und bei kritischen Konstellationen Warnungen und weitere fachliche Unterstützung anbietet. Zudem unterstützt das System die medizinische Dokumentation.

Eine hohe Patientensicherheit ist vorrangiges Ziel der gesundheitlichen Versorgung. In den USA gehen die Centers for Disease Control and Prevention (CDC) davon aus, dass medizinische Fehler mit 251.000 Fällen/Jahr an dritter Stelle der Todesursachen stehen, hinter Herz-Kreislauf- (611.000 Fälle/Jahr) und Krebserkrankungen (586.000 Fälle/Jahr; [1]). Darüber hinaus stellen Behandlungsfehler eine erhebliche Belastung für die Gesundheitssysteme dar [2].

Medizinische Fehler sind eine häufige Todesursache

Die beiden häufigsten vermeidbaren Ereignisse sind unerwünschte Arzneimittelwirkungen sowie diagnostische Fehler [3, 4]. Diagnostische Fehler haben gravierende gesundheitliche Folgen, nicht zuletzt weil die Ergebnisse der Diagnostik zu spät wahrgenommen wurden, eine Anforderung des falschen Tests erfolgt oder der Mediziner nicht auf das Ergebnis reagiert [4]. Dies kann nicht nur für den Patienten schwerwiegende Folgen haben, sondern auch weitreichende arzthaftungsrechtliche Probleme aufwerfen. Ursächlich sind insbesondere die ungenügende Kommunikation zwischen den Gesundheitsakteuren und Patienten, eine lückenhafte Dokumentation sowie eine fehlende Reaktion und unterlassene Folgekontrolle der Diagnostik [5].

Steigende Komplexität labormedizinischer Diagnostik

Labormedizinische Diagnostik ist sowohl für die ambulante als auch für die stationäre Patientenversorgung von herausragender Bedeutung und nimmt in Bezug auf die Quantität und Komplexität im zeitlichen Verlauf weiter zu. Ein Anteil von 60 bis 70 % aller Entscheidungen zur Behandlung von Patienten beruht teilweise oder ausschließlich auf Laborergebnissen, somit stellen diese einen der wichtigsten Pfeiler der medizinischen Diagnostik dar [6, 7].

Ärzte müssen die Ergebnisse der labormedizinischen Diagnostik rechtzeitig zur Kenntnis nehmen, sie im Kontext der Klinik des Patienten bewerten und die adäquaten weiteren diagnostischen und therapeutischen Maßnahmen veranlassen. Im Zuge einer fortschreitenden Arbeitsverdichtung und Spezialisierung im klinischen wie auch ambulanten Bereich stellt dies eine Herausforderung bezüglich der Patientensicherheit dar [8, 9]. Die Tatsache, dass Laborbefunde immer schneller erstellt und mitgeteilt werden, macht auch aufseiten der anfordernden Ärzte eine entsprechend zeitnahe Sichtung und Reaktion auf die Befunde erforderlich. Ein Unterlassen kann weitreichende Folgen haben.

Die Komplexität der Diagnostik führte beispielhaft dazu, dass 45 % der dringlich angeforderten Laborparameter in der Notaufnahme unberücksichtigt blieben oder verspätet zur Kenntnis genommen wurden [10]. Gleichzeitig sind sich 82 % der Mediziner bewusst, dass regelmäßig Fehler durch unberücksichtigte Laborergebnisse entstehen [11].

Labormedizinischer Prozess im Hinblick auf die Patientensicherheit

Der Prozess labormedizinischer Diagnostik lässt sich in drei Phasen gliedern: Präanalytik, Analytik und Postanalytik (Abb. 1; [12]). Die Präanalytik umfasst neben der Indikationsstellung die Beauftragung, Probengewinnung und -transport sowie die Prozessierung im Labor. Die Analytik bezeichnet den eigentlichen Messvorgang. Zur Postanalytik gehören die technische und medizinische Validation, die Erstellung und Übermittlung des labormedizinischen Befunds, die Kenntnisnahme und Interpretation sowie das Ergreifen der notwendigen diagnostischen und therapeutischen Konsequenz. Jeder einzelne Vorgang ist potenziell fehleranfällig und daher im Sinne der Patientensicherheit relevant.

Abb. 1
figure 1

Phasen der labormedizinischen Diagnostik. Die Analytik ist im höchsten Maße qualitätsgesichert. Die Mehrzahl der laborassoziierten Fehler ereignet sich jedoch außerhalb der Analytik. Eine Qualitätssicherung der Prä- und Postanalytik ist bislang kaum etabliert. (Mit freundl. Genehmigung © AMPEL, www.ampel.care)

Qualitätssicherungsmaßnahmen fokussieren auf die Analytik sowie Teile der Präanalytik

Die labormedizinische Diagnostik ist in Deutschland intensiv qualitätsgesichert. Die entsprechenden Regularien (Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen [13], Medizinproduktegesetz [14], Medizinprodukte-Betreiberverordnung [15]) sind für jedes medizinische Labor bindend. Eine erweiterte Stufe der Qualitätssicherung stellt die Akkreditierung über die Deutsche Akkreditierungsstelle dar [16]. Die Qualitätssicherungsmaßnahmen und Regularien fokussieren auf die Analytik (etwa interne und externe Qualitätskontrollen) sowie Teile der Präanalytik, beispielsweise mit eindeutiger Identifizierung durch Barcode, elektronischer Auftragserfassung sowie Bewertung von Störfaktoren wie Hämolyse, Ikterus und Hyperlipidämie.

Die häufigsten Fehler im diagnostischen Prozess betreffen Prä- und Postanalytik

Aufgrund der genannten Qualitätssicherungsmaßnahmen sowie moderner labormedizinischer Verfahren entfallen mittlerweile die wenigsten diagnostischen Fehler auf die Analytik (7–13 %; [17, 18]). Die meisten Fehler treten in der Präanalytik (46–68 %) und Postanalytik (19–47 %) auf [17]. Prozesse der Postanalytik nach Übermittelung des Laborbefunds sind bislang nicht Gegenstand einer spezifischen labormedizinischen Qualitätssicherung.

„Brain-to-brain loop“ und Laborinformationssysteme

Mit dem Ziel einer umfassenden Qualitätssicherung einschließlich des postanalytischen Bereichs wurde bereits 1990 das Modell „brain-to-brain loop“ (BTBL) definiert [12]. Das BTBL-Modell stellt den Behandler in das Zentrum des diagnostischen Prozesses. Dem Behandler muss zeitgerecht der labormedizinische Befund mit allen notwendigen weiteren Informationen für eine adäquate Interpretation zugänglich gemacht werden, um angemessene diagnostische und therapeutische Maßnahmen zu ermöglichen. Aufgrund von unplanbaren Akutsituationen, Stationswechseln, Personalausfällen, Schichtarbeit, Weiterbildung, Urlaub oder Rotationen droht ein Informationsverlust. Eine technische Lösung könnte dazu beitragen, Informationsverluste zu verhindern und einen geschlossenen BTBL sicherzustellen ([19]; Abb. 1).

Laborinformationssysteme (LIS) übertragen in der Regel im stationären Bereich Befunde in das Klinikinformationssystem (KIS). Eine Überprüfung der Kenntnisnahme durch die Kliniker, beispielsweise durch Quittierung, ist nur in wenigen Teilbereichen etabliert.

Im LIS sind laborindividuelle Regeln hinterlegt, die den Labormediziner bei der Identifikation von Extremwerten, präanalytischen Störfaktoren wie Patientenverwechslungen und unplausiblen Analyseergebnissen unterstützen. Bei pathologischen Ergebnissen, die einer dringenden Intervention bedürfen, wird der Einsender unmittelbar nach dem Messvorgang telefonisch informiert [20], sofern das Labor die erforderlichen Kenntnisse über die Identifikation und medizinischen Konsequenzen hat. Das Ziehen der notwendigen medizinischen Konsequenz aus der labormedizinischen Diagnostik wird bislang durch kein entsprechendes System sichergestellt.

„Clinical decision support systems“ (CDSS)

Die Anzahl der Veröffentlichungen, die mit dem Suchbegriff „clinical decision support system“ (CDSS) über die Wissenschaftsplattform PubMed (https://www.ncbi.nlm.nih.gov/pubmed) abrufbar sind, steigt mit zunehmender Geschwindigkeit. Wir führten zum 31.10.2019 eine entsprechende Literaturrecherche durch (Tab. 1).

Tab. 1 „Clinical decision support systems“ aus dem Jahr 2019 (Literaturrecherche bis 31.10.2019)

In der Literatur finden sich seit 1961 [31] unterschiedlichste Ansätze, Kliniker bei der Patientenbehandlung zu unterstützen. Die publizierten CDSS zielen zumeist auf eine erleichterte Diagnosestellung oder Klassifizierung von Krankheitsbildern. Hierbei wird die erhebliche Heterogenität in Bezug auf die Methoden und medizinischen Ziele deutlich. Gemein haben die Systeme eine punktuelle Funktionsweise, häufig innerhalb eines Fachgebiets. Bemerkenswert ist, dass 2019 6 der 10 Erstautoren der Bioinformatik zuzuordnen waren, während im selben Jahr 4 CDSS von Ärzten publiziert wurden. Die Entwicklung von CDSS wird entsprechend den verfügbaren Publikationen aktuell eher von Informatikern, Pharmakologen oder öffentlichen Organisationen und seltener von Medizinern vorangetrieben.

Mit der Vielzahl qualitätsgesicherter, in strukturierter Form vorliegender, klinisch relevanter Befunde stellt die Labormedizin einen hervorragenden Ausgangspunkt für ein CDSS dar. Vor diesem Hintergrund ist überraschend, dass in den letzten 10 Jahren nur wenige CDSS mit einem engen Bezug zur Labormedizin entwickelt wurden, wobei bislang keines dieser publizierten Systeme von der Labormedizin initiiert wurde (Tab. 2).

Tab. 2 „Clinical decision support systems“ der letzten 10 Jahre mit direktem Bezug zur Labormedizin (Literaturrecherche bis 31.10.2019)

Forschungsprojekt AMPEL

Das Forschungsprojekt AMPEL hat zum Ziel, die stationär und ambulant tätigen Behandler zu unterstützen. Hierzu wird die labormedizinische Diagnostik in Echtzeit im Kontext weiterer Patientenbefunde analysiert und die Behandler werden frühzeitig über kritische Konstellationen informiert. Auf Basis interdisziplinär definierter und ständig weiterentwickelter Regelwerke werden labormedizinische Befunde und Daten aus dem KIS miteinander verrechnet und soweit medizinisch sinnvoll notwendige elektronische Meldungen generiert.

Das Verbundprojekt des Universitätsklinikums Leipzig AöR, der gemeinnützigen Muldentalkliniken GmbH und des mittelständischen Informationstechnologie(IT)-Unternehmens Xantas AG wird vom Freistaat Sachsen und der Europäischen Union mit rund 2,6 Mio. € im Rahmen der RL eHealthSax 2017/18 gefördert [40]. Das Projekt ist auf eine Laufzeit von zwei Jahren bis Ende 2020 ausgelegt. Inhaltlich wird das AMPEL-Projekt vom Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik (ILM) des Universitätsklinikums Leipzig geleitet.

Die elektronischen Alarmierungen aus dem AMPEL-System werden je nach Dringlichkeit und Krankheitsbild spezifisch gesteuert und können auf verschiedenen elektronischen Wegen die Labormediziner, AMPEL-Verantwortlichen und/oder Behandler erreichen.

Auf Basis der verfügbaren Evidenz, umfangreicher retrospektiver Analysen labormedizinischer Diagnostik sowie der Kompetenz für die Analytik, Prä- und Postanalytik wird initial jeweils ein Rahmen für die Meldesysteme erarbeitet. Unter enger Zusammenarbeit mit den klinischen Spezialisten erfolgt die Abstimmung auf die Erfordernisse der klinischen Praxis. Hierbei steht die effektive Unterstützung der klinischen Abläufe konsequent im Fokus. Angestrebt wird für jedes Meldesystem eine hohe Spezifität, um Fehlalarme zu vermeiden und einer Alarmmüdigkeit [41] vorzubeugen. Die resultierenden Regelwerke und Meldesysteme werden sodann in den Testbetrieb überführt, ständig weiter an die medizinischen Erfordernisse angepasst und dabei prospektiv wissenschaftlich evaluiert.

Das AMPEL-System soll als CDSS der digitalen Labormedizin eine angemessene Diagnostik ermöglichen

Die Kooperation von Krankenhäusern verschiedener Versorgungsstufen als Partner im AMPEL-Projekt (zwei regionale Kliniken und eine Universitätsklinik) unterstützt die Entwicklung eines Analyse- und Meldesystems, in dem unterschiedlichen spezifischen Bedürfnissen Rechnung getragen wird. Eine wesentliche Herausforderung für das Projekt stellt der Aufbau einer verlässlichen IT-Infrastruktur mit hoher Performance dar, die auch bei komplexen Regelwerken einen zuverlässigen 24/7-Echtzeitbetrieb des AMPEL-Systems gewährleistet.

Neben den technischen Erfordernissen für das Analyse- und Meldesystem existieren hohe Ansprüche an die Verfügbarkeit von Ergebnissen und klinischen Daten aus anderen Patienteninformationssystemen. So sind beispielsweise eine flächendeckende Netzwerkinfrastruktur und die Erhebung standardisierter und personalisierter Befunde, beispielsweise des Elektrokardiogramms (EKG), notwendig, um die Erstellung und Funktion spezifischer AMPEL-Regelwerke, etwa bei akutem Koronarsyndrom, zu gewährleisten. Vor allem bei komplexen Regelwerken ist eine Datenverarbeitung in Echtzeit erforderlich, sodass aus Gründen der Performance konventionelle Datenbankstrukturen durch In-memory-Datenbanken ersetzt werden müssen.

Eine weitere Herausforderung stellen die Konzeption und Ausgestaltung der Meldesysteme dar. Diese müssen zum einen an die verfügbare Infrastruktur und zum anderen an die Dringlichkeit und medizinischen Erfordernisse angepasst werden. Zum aktuellen Zeitpunkt sind im AMPEL-System Meldungen mittels Telefon oder E‑Mail sowie Alarmierungen im LIS und KIS etabliert. Besonders die Alarmierung im KIS bietet interessante Optionen für die Bereitstellung weiterführender Informationen zum Patienten und Krankheitsbild, etwa in Form interner oder externer Behandlungsleitlinien. Darüber hinaus eröffnet sie vielversprechende Interaktionsmöglichkeiten.

Ausgehend von einfachen Regelwerken, beispielsweise zur Hypokaliämie (s. unten), werden im Projekt zunehmend komplexere Regelwerke zu unterschiedlichen Krankheitsbildern entwickelt (Tab. 3). Regelwerksvorschläge von klinischen Partnern können integriert werden.

Tab. 3 Im AMPEL-Projekt berücksichtigte Biomarker, die bei ausgeprägt pathologischen Werten einen lebensbedrohlichen Zustand des Patienten anzeigen können

Zusätzlich kann das AMPEL-Regelwerk neben der Alarmierung in Echtzeit auch die Dokumentation von Diagnosen im Arztbrief sowie deren Codierung fördern (Tab. 3).

AMPEL-Regelwerk und Meldesystem zur Hypokaliämie

Die bislang umfangreichsten Erfahrungen konnten mit dem einfachen AMPEL-Regelwerk zur lebensbedrohlichen Hypokaliämie gesammelt werden. Es diente als „proof of concept“ für das AMPEL-Projekt und beschränkt sich auf zwei Messgrößen:

  • Kaliumkonzentration <2,5 mmol/l [42, 43]

  • Zeit bis zur Kontrollmessung >6 h [43, 44]

Ist bei schwerer Hypokaliämie (<2,5 mmol/l) innerhalb von 6 h keine Kaliumkontrolle eingegangen, erfolgt die Alarmierung mittels Anruf.

Bei einer schweren Hypokaliämie treten diverse Symptome auf, unter anderem muskuläre Adynamie, Hyporeflexie, Obstipation, Blasenlähmung, paralytischer Ileus, EKG-Veränderungen mit Abflachung der T‑Welle und Herzrhythmusstörungen bis hin zum Kammerflimmern [45], sodass eine Warnmeldung zur Vermeidung eines Zeitverzugs lebensrettend sein kann. Die Wahl des Cut-offs und des Zeitintervalls ist auf eine möglichst hohe Spezifität ausgerichtet, um unnötige Alarmierungen zu vermeiden.

Vor der Implementierung erfolgte die retrospektive Testung anhand der Vorjahresanalyseergebnisse des Universitätsklinikums Leipzig. Im Jahr 2018 wurden insgesamt 414.988 Kaliumbestimmungen durchgeführt. Davon ergaben 37.377 eine Hypokaliämie (<3,6 mmol/l), darunter 441 schwere Hypokaliämien (<2,5 mmol/l). Die Wiederbestimmungszeiten lagen im Median bei 5,6 h. Die retrospektive Simulation des Regelwerks für das Jahr 2018 erzeugte 159 Warnmeldungen für eine schwere Hypokaliämie, die nicht innerhalb von 6 h kontrolliert wurden. Aufgrund dieser Ergebnisse sowie der Angaben aus der Literatur wurden die Cut-offs und Kontrollzeit bestätigt. Das AMPEL-System für Hypokaliämie wurde am 06.03.2019 für einen Teil der Patienten am Universitätsklinikum Leipzig erstmals aktiviert, woraufhin erste prospektive Daten gewonnen werden konnten. Es zeigte sich eine positive Wahrnehmung der zusätzlichen Alarmierungen durch die Einsender. Das Projektteam konnte bereits nachweisen, dass bei den Patienten mit aktiviertem Meldesystem schneller auf die Kaliummessungen reagiert wurde. Im Median wurde die Zeit bis zur Kaliumkontrolle bei Patienten mit <2,5 mmol/l von 32,9 h auf 4,9 h reduziert (n = 10, Mann-Whitney-U-Test: p = 0,011). Eine Publikation zum Regelwerk „Kalium“ mit weiteren prospektiven Ergebnissen befindet sich in Vorbereitung (Abb. 2).

Abb. 2
figure 2

Retrospektive Analyse zur Alarmierungshäufigkeit bei schwerer Hypokaliämie. a Ergebnisse der Kaliummessung in Plasma, Serum und Vollblut bei schwerer Hypokaliämie (rot <2,5 mmol/l; grün Referenzbereich); grüne Linie Median (4,2 mmol/l). b Kaliumwiederbestimmungsintervalle <6 h und ≥6 h (rot); grüne Linie Median (5,6 h). c Kaliumwiederbestimmungsintervalle bei einer schweren Hypokaliämie (<2,5 mmol/l) <6 h und ≥6 h (rot); grüne Linie Median (4,8 h)

Ziele und Ausblick

Innerhalb der Projektlaufzeit sollen unterschiedliche Regelwerke entwickelt und in der praktischen Anwendung wissenschaftlich untersucht werden. Hauptziel des AMPEL-Projekts ist es, die Patientensicherheit durch Unterstützung einer adäquaten medizinischen Konsequenz signifikant zu verbessern. Die vielversprechenden Ergebnisse des Meldesystems zur Hypokaliämie untermauern die Hoffnung, am Ende der Projektlaufzeit die Grundlage für ein praxistaugliches labormedizinisches CDSS gelegt zu haben. Perspektivisch soll das AMPEL-System neben Warnmeldungen und akuten Therapiehinweisen auch erweiterte Interpretationshilfen für bestimmte Befundkonstellationen bieten und, sofern zweckmäßig, weitere sinnvolle labormedizinische Diagnostik vorschlagen.

Neben den unmittelbaren Alarmierungen bei möglicherweise verzögerter oder inadäquater therapeutischer Konsequenz soll das AMPEL-System auch die Dokumentation relevanter Befunde und Diagnosen sowie deren medizinische Codierung unterstützen.

Die medizinische Dokumentation ist wenig standardisiert und limitiert die Nutzbarkeit

Eine Herausforderung für das Projekt stellt die überwältigende Menge an medizinischen Daten dar. Die Dokumentation ist häufig wenig standardisiert und heterogen zwischen unterschiedlichen Leistungserbringern. Dies limitiert und erschwert erheblich die Nutzbarkeit der Daten. Die Medizininformatik-Initiative des Bundes [46] zielt auf eine entsprechende Harmonisierung und bessere Nutzbarmachung der Daten über Klinikgrenzen hinaus. Aktuell ist jedoch nicht sicher absehbar, welcher zeitliche Aufwand hierfür notwendig sein wird.

Labormedizinische Befunde bieten aufgrund ihrer hohen Qualität und guten Vergleichbarkeit zwischen medizinischen Laboren bereits jetzt eine vielversprechende Ausgangsposition für geeignete CDSS, die durch Implementierung einer einheitlichen Parameterbezeichnung (Logical Observation Identifiers Names and Codes, LOINC [47]) weiter verbessert wird.

Die im Rahmen des AMPEL-Systems verwendeten Regelwerke basieren auf Entscheidungsbäumen unter kritischer Berücksichtigung aktueller Fachliteratur sowie auf retrospektiven Analysen von Ergebnissen aus der labormedizinischen Routinediagnostik. Hier könnten zukünftig maschinelle Lernverfahren helfen, die Regelwerke weiter zu verfeinern. Ferner könnten auf diese Weise bislang unbekannte klinische Zusammenhänge aufgedeckt werden. Aktuell laufen erste Untersuchungen im AMPEL-Projekt, ob sich Sensitivität und Spezifität bestimmter Regelwerke durch Methoden des maschinellen Lernens verbessern lassen. Durch die Kombination und Verrechnung klinischer Daten mit labormedizinischer Diagnostik könnte die Identifikation indikativer Biomarker- oder besonderer klinischer Konstellationen ermöglicht werden. Als Werkzeug zur permanenten Hintergrundanalyse könnten diese Systeme auch helfen, im Einsatz befindliche CDSS zu identifizieren, die weiteren Optimierungsbedarf bieten.

Methoden des maschinellen Lernens könnten CDSS weiter verbessern

Ziel und Motivation ist die Entwicklung eines Systems der digitalen Labormedizin, das die aktuellen Möglichkeiten der IT nutzt, um nachweislich Outcome und Patientensicherheit zu verbessern und zugleich die Leistungsträger im Gesundheitssystem zu entlasten.

Fazit für die Praxis

  • Medizinische Fehler gehören zu den häufigen Todesursachen in Industrieländern.

  • Die häufigsten Fehler im labordiagnostischen Bereich entfallen auf die Phase vor bzw. nach dem eigentlichen Messvorgang (Prä- und Postanalytik).

  • Insbesondere die postanalytische Phase ist bislang nicht systematisch qualitätsgesichert.

  • Medizinische Meldesysteme wie AMPEL könnten den Behandlern helfen, eine adäquate medizinische Konsequenz auf labormedizinische Diagnostik sicherzustellen.

  • Das AMPEL-System analysiert im Sinne einer digitalen Labormedizin medizinische Befunde anhand von interdisziplinär entwickelten Regelwerken.

  • Bei Hinweisen auf kritische Konstellationen oder verzögerte medizinisch notwendige Maßnahmen erfolgen Warnmeldungen und Hilfestellungen in Echtzeit.

  • Das AMPEL-System soll die Patientensicherheit verbessern, die Behandler entlasten und die medizinische Dokumentation unterstützen.

  • Verfahren der künstlichen Intelligenz können helfen, die Regelwerke und Meldesysteme weiter zu verbessern.