Skip to main content
Log in

Akute Nierenschädigung: von Kreatinin zu KIM‑1?

Acute kidney injury: from creatinine to KIM‑1?

  • Schwerpunkt: Biomarker in der Akutmedizin
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

In der Diagnostik der akuten Nierenschädigung („acute kidney injury“ [AKI]) sind neben dem frühen Erfassen der AKI mehrere Probleme bzw. Fragen zu adressieren. Dazu zählen das Erkennen der Ursache, der Schwere (funktionell oder strukturell), der Prognose (Erholung oder Übergang in chronisches Nierenversagen) und des Verlaufs (Dialysepflichtigkeit oder nicht) sowie das Erfassen spezifischer Therapiemöglichkeiten bei AKI. Der vorliegende Beitrag gibt einen Überblick über etablierte und neue Biomarker der AKI sowie einen Ausblick auf zukünftige biomarkerassoziierte Modelle der AKI.

Abstract

In addition to the early detection of an acute kidney injury (AKI), several problems or questions have to be addressed. These include the identification of the etiology, the severity (functional or structural), the prognosis (recovery or transition to chronic renal failure), the course of the disease (dialysis or not), and the identification of specific treatment options for AKI. The following article provides an overview of established and new AKI biomarkers as well as an outlook on the potential of future biomarker-associated models of AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Alge JL, Arthur JM (2015) Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol 10:147–155

    Article  CAS  Google Scholar 

  2. Amato RJ, Stephenson J, Hotte S et al (2012) MG98, a second-generation DNMT1 inhibitor, in the treatment of advanced renal cell carcinoma. Cancer Invest 30:415–421

    Article  CAS  Google Scholar 

  3. Arthur JM, Hill EG, Alge JL et al (2014) Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery. Kidney Int 85:431–438

    Article  CAS  Google Scholar 

  4. Balasubramanian G, Al-Aly Z, Moiz A et al (2011) Early nephrologist involvement in hospital-acquired acute kidney injury: a pilot study. Am J Kidney Dis 57:228–234

    Article  Google Scholar 

  5. Bechtel W, McGoohan S, Zeisberg EM et al (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16:544–U575

    Article  CAS  Google Scholar 

  6. Bonventre JV, Vaidya VS, Schmouder R et al (2010) Next-generation biomarkers for detecting kidney toxicity. Nat Biotechnol 28:436–440

    Article  CAS  Google Scholar 

  7. Chang YT, Yang CC, Pan SY et al (2016) DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys. J Clin Investig 126:721–731

    Article  Google Scholar 

  8. Delanaye P, Cavalier E, Morel J et al (2014) Detection of decreased glomerular filtration rate in intensive care units: serum cystatin C versus serum creatinine. BMC Nephrol 15:9

    Article  Google Scholar 

  9. Devarajan P, Krawczeski CD, Nguyen MT et al (2010) Proteomic identification of early biomarkers of acute kidney injury after cardiac surgery in children. Am J Kidney Dis 56:632–642

    Article  CAS  Google Scholar 

  10. Dihazi H, Koziolek MJ, Datta RR et al (2016) FABP1 and FABP3 have high predictive values for renal replacement therapy in patients with acute kidney injury. Blood Purif 42:202–213

    Article  CAS  Google Scholar 

  11. Doi K, Negishi K, Ishizu T et al (2011) Evaluation of new acute kidney injury biomarkers in a mixed intensive care unit. Crit Care Med 39:2464–2469

    Article  CAS  Google Scholar 

  12. Ehret GB, Munroe PB, Rice KM et al (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478:103–109

    Article  CAS  Google Scholar 

  13. Gocze I, Jauch D, Gotz M et al (2018) Biomarker-guided intervention to prevent acute kidney injury after major surgery the prospective randomized BigpAK study. Ann Surg 267:1013–1020

    Article  Google Scholar 

  14. Gonzalez F, Vincent F (2012) Biomarkers for acute kidney injury in critically ill patients. Minerva Anestesiol 78:1394–1403

    CAS  PubMed  Google Scholar 

  15. Gorski M, Tin A, Garnaas M et al (2015) Genome-wide association study of kidney function decline in individuals of European descent. Kidney Int 87:1017–1029

    Article  CAS  Google Scholar 

  16. Guo C, Dong G, Liang X et al (2019) Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat Rev Nephrol 15(4):220–239

    Article  Google Scholar 

  17. Haase M, Devarajan P, Haase-Fielitz A et al (2011) The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury A multicenter pooled analysis of prospective studies. J Am Coll Cardiol 57:1752–1761

    Article  CAS  Google Scholar 

  18. Han WK, Bailly V, Abichandani R et al (2002) Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62:237–244

    Article  CAS  Google Scholar 

  19. Hanna MH, Segar JL, Teesch LM et al (2013) Urinary metabolomic markers of aminoglycoside nephrotoxicity in newborn rats. Pediatr Res 73:585–591

    Article  CAS  Google Scholar 

  20. Herget-Rosenthal S, Marggraf G, Husing J et al (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66:1115–1122

    Article  CAS  Google Scholar 

  21. Herget-Rosenthal S, Pietruck F, Volbracht L et al (2005) Serum cystatin C—a superior marker of rapidly reduced glomerular filtration after uninephrectomy in kidney donors compared to creatinine. Clin Nephrol 64:41–46

    Article  CAS  Google Scholar 

  22. Hocher B, Adamski J (2017) Metabolomics for clinical use and research in chronic kidney disease. Nat Rev Nephrol 13:269–284

    Article  CAS  Google Scholar 

  23. http://www.adqi.org/. Abgerufen: 19. Jan. 2019

  24. Huang N, Tan L, Xue ZG et al (2012) Reduction of DNA hydroxymethylation in the mouse kidney insulted by ischemia reperfusion. Biochem Biophys Res Commun 422:697–702

    Article  CAS  Google Scholar 

  25. Jo SK, Rosner MH, Okusa MD (2007) Pharmacologic treatment of acute kidney injury: why drugs haven’t worked and what is on the horizon. Clin J Am Soc Nephrol 2:356–365

    Article  Google Scholar 

  26. Jones TF, Bekele S, O’Dwyer MJ et al (2018) MicroRNas in acute kidney injury. Nephron 140:124–128

    Article  CAS  Google Scholar 

  27. Kashani K, Al-Khafaji A, Ardiles T et al (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17. https://doi.org/10.1186/cc12503

    Article  PubMed  PubMed Central  Google Scholar 

  28. Klein SJ, Brandtner AK, Lehner GF et al (2018) Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Intensive Care Med 44:323–336

    Article  CAS  Google Scholar 

  29. Koyner JL, Davison DL, Brasha-Mitchell E et al (2015) Furosemide stress test and Biomarkers for the prediction of AKI severity. J Am Soc Nephrol 26:2023–2031

    Article  CAS  Google Scholar 

  30. Lu JCT, Coca SG, Patel UD et al (2009) Searching for genes that matter in acute kidney injury: a systematic review. Clin J Am Soc Nephrol 4:1020–1031

    Article  CAS  Google Scholar 

  31. Marx D, Metzger J, Pejchinovski M et al (2018) Proteomics and metabolomics for AKI diagnosis. Semin Nephrol 38:63–87

    Article  CAS  Google Scholar 

  32. Meersch M, Schmidt C, Hoffmeier A et al (2017) Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med 43:1551–1561

    Article  CAS  Google Scholar 

  33. Mishra J, Ma Q, Prada A et al (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14:2534–2543

    Article  CAS  Google Scholar 

  34. Mishra J, Mori K, Ma Q et al (2004) Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 15:3073–3082

    Article  Google Scholar 

  35. Nguyen MT, Ross GF, Dent CL et al (2005) Early prediction of acute renal injury using urinary proteomics. Am J Nephrol 25:318–326

    Article  CAS  Google Scholar 

  36. Nguyen MT, Dent CL, Ross GF et al (2008) Urinary aprotinin as a predictor of acute kidney injury after cardiac surgery in children receiving aprotinin therapy. Pediatr Nephrol 23:1317–1326

    Article  Google Scholar 

  37. Nickolas TL, Schmidt-Ott KM, Canetta P et al (2012) Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage a multicenter prospective cohort study. J Am Coll Cardiol 59:246–255

    Article  CAS  Google Scholar 

  38. Noto A, Cibecchini F, Fanos V et al (2013) NGAL and metabolomics: the single biomarker to reveal the metabolome alterations in kidney injury. Biomed Res Int. https://doi.org/10.1155/2013/612032

    Article  PubMed  PubMed Central  Google Scholar 

  39. Parikh CR, Jani A, Melnikov VY et al (2004) Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 43:405–414

    Article  CAS  Google Scholar 

  40. Parr SK, Clark AJ, Bian A et al (2015) Urinary L‑FABP predicts poor outcomes in critically ill patients with early acute kidney injury. Kidney Int 87:640–648

    Article  CAS  Google Scholar 

  41. Rodriguez E, Soler MJ, Rap O et al (2013) Risk factors for acute kidney injury in severe rhabdomyolysis. PLoS ONE 8. https://doi.org/10.1371/journal.pone.0082992

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schnackenberg LK, Sun JC, Pence LM et al (2012) Metabolomics evaluation of hydroxyproline as a potential marker of melamine and cyanuric acid nephrotoxicity in male and female Fischer F344 rats. Food Chem Toxicol 50:3978–3983

    Article  CAS  Google Scholar 

  43. Sparrow HG, Swan JT, Moore LW, Gaber AO, Suki WN (2019) Disparate outcomes observed within Kidney Disease: Improving Global Outcomes (KDIGO) acute kidney injury stage. Kidney Int 95(4):905–913

    Article  Google Scholar 

  44. Sun JC, Shannon M, Ando Y et al (2012) Serum metabolomic profiles from patients with acute kidney injury: a pilot study. J Chromatogr B Analyt Technol Biomed Life Sci 893:107–113

    Article  Google Scholar 

  45. Tampe B, Tampe D, Muller CA et al (2014) Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7‑induced reversal of kidney fibrosis. J Am Soc Nephrol 25:905–912

    Article  CAS  Google Scholar 

  46. Tampe B, Tampe D, Zeisberg EM et al (2015) Induction of Tet3-dependent epigenetic remodeling by low-dose hydralazine attenuates progression of chronic kidney disease. EBioMedicine 2:19–36

    Article  Google Scholar 

  47. Tampe B, Steinle U, Tampe D et al (2017) Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression. Kidney Int 91:157–176

    Article  CAS  Google Scholar 

  48. Uehara T, Horinouchi A, Morikawa Y et al (2014) Identification of metabolomic biomarkers for drug-induced acute kidney injury in rats. J Appl Toxicol 34:1087–1095

    Article  CAS  Google Scholar 

  49. Vaidya VS, Ford GM, Waikar SS et al (2009) A rapid urine test for early detection of kidney injury. Kidney Int 76:108–114

    Article  CAS  Google Scholar 

  50. Vanmassenhove J, Van Biesen W, Vanholder R et al (2019) Subclinical AKI: ready for primetime in clinical practice? J Nephrol 32:9–16

    Article  Google Scholar 

  51. Waikar SS, Liu KD, Chertow GM (2008) Diagnosis, epidemiology and outcomes of acute kidney injury. Clin J Am Soc Nephrol 3:844–861

    Article  Google Scholar 

  52. Wang J, Zhou Y, Xu M et al (2011) Urinary metabolomics in monitoring acute tubular injury of renal allografts: a preliminary report. Transplant Proc 43:3738–3742

    Article  CAS  Google Scholar 

  53. Weiss RH, Kim KM (2012) Metabolomics in the study of kidney diseases. Nat Rev Nephrol 8:22–33

    Article  CAS  Google Scholar 

  54. Wu HL, Craft ML, Wang P et al (2008) IL-18 contributes to renal damage after ischemia-reperfusion. J Am Soc Nephrol 19:2331–2341

    Article  CAS  Google Scholar 

  55. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18:1028–1040

    Article  CAS  Google Scholar 

  56. Xu XB, Tan XY, Tampe B et al (2018) High-fidelity CRISPR/Cas9-based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis. Nat Commun 9. https://doi.org/10.1038/s41467-018-05766-5

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yamamoto T, Noiri E, Ono Y et al (2007) Renal L‑type fatty acid-binding protein in acute ischemic injury. J Am Soc Nephrol 18:2894–2902

    Article  CAS  Google Scholar 

  58. Yoo J, Kim JH, Robertson KD et al (2012) Molecular modeling of inhibitors of human DNA methyltransferase with a crystal structure: discovery of a novel DNMT1 inhibitor. Adv Protein Chem Struct Biol 87:219–247

    Article  CAS  Google Scholar 

  59. Zgoda-Pols JR, Chowdhury S, Wirth M et al (2011) Metabolomics analysis reveals elevation of 3‑indoxyl sulfate in plasma and brain during chemically-induced acute kidney injury in mice: investigation of nicotinic acid receptor agonists. Toxicol Appl Pharmacol 255:48–56

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Koziolek.

Ethics declarations

Interessenkonflikt

B. Tampe und H. Dihazi geben an, dass kein Interessenkonflikt besteht. M.J. Koziolek gibt Vortragshonorare und Forschungsunterstützung von Novartis Pharma, Servier und CVRx an, M. Wallbach von CVRx.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

G. Hasenfuß, Göttingen

S. von Haehling, Göttingen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallbach, M., Tampe, B., Dihazi, H. et al. Akute Nierenschädigung: von Kreatinin zu KIM‑1?. Internist 60, 578–586 (2019). https://doi.org/10.1007/s00108-019-0602-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-019-0602-y

Schlüsselwörter

Keywords

Navigation