Skip to main content
Log in

Properties improvement of seven hardwood species by combination of thermal and chemical modifications

  • Original Article
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Most European hardwoods are nowadays under-utilized due to drawbacks such as low dimensional stability, durability and surface hardness. Seven hardwood species were thermally and/or chemically modified in order to improve these disadvantages. Heat treatment was carried out in air at atmospheric pressure at three temperatures, while two types of chemical modifications were tested, the first being based on furfuryl alcohol with tartaric acid, the second being based on succinic anhydride and glycerol. Then, modified woods were studied to determine weight loss due to thermal treatment, solution uptake, weight percent gain and swelling due to chemical modification processes. After that, main properties of chemically modified woods were characterized including density, equilibrium moisture content, dimensional stability and surface hardness. Effect of thermal pretreatment on subsequent chemical modification and on properties of modified woods obtained have also been evaluated. Combination of thermal modification with chemical modification had led to better improvements than each separately. Furfurylation treatment appeared to be more efficient than polyester modification. Most of the modified samples were denser, more stable and harder than native wood. These modified woods might compete with imported tropical wood for applications requiring high stability and hardness, such as joinery, decking or flooring, music instruments, handles for tools or kitchen utensils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Benoit Y (2008) Le guide des essences de bois. Deuxième édition. FCBA : Forêt. Cellulose, Bois,Construction, Ameublement, Paris [The guide to wood species. Second edition. FCBA: Forest, Cellulose, Wood, Construction, Furniture. Paris] ISBN13 978-2-212-67634-1

  • Čermák P, Hess D, Suchomelová P (2021) Mass loss kinetics of thermally modified wood species as a time–temperature function. Eur J Wood Prod 79:547–555. https://doi.org/10.1007/s00107-020-01634-6

    Article  Google Scholar 

  • Cuadrado J, Zubizarreta M, Pelaz B, Marcos I (2015) Methodology to assess the environmental sustainability of timber structures. Constr Build Mater 86:149–158. https://doi.org/10.1016/j.conbuildmat.2015.03.109

    Article  CAS  Google Scholar 

  • Centre Technique du Bois (1972) Principaux Bois Indigènes et Exotiques Utilisés en France. Caractéristiques sommaires et emplois. [Main indigenous and exotic woods used in France. Principal Characteristics and uses.-] 4th Edition, Paris

  • Damay J (2014) Développement de nouveaux traitements du bois basés sur le procédé d’imprégnation axiale [Development of new wood treatments based on the axial impregnation process] PhD Université de Lorraine http://docnum.univ-lorraine.fr/public/DDOC_T_2014_0178_DAMAY.pdf. Accessed 9th Oct 2023

  • De Windt I, Van den Bulcke J, Wuijtens I, Coppens H, Van Acker J (2014) Outdoor weathering performance parameters of exterior wood coating systems on tropical hardwood substrates. Eur J Wood Prod 72:261–272. https://doi.org/10.1007/s00107-014-0779-7

    Article  CAS  Google Scholar 

  • Deka M, Saikia CN (2000) Chemical modification of wood with thermosetting resin: effect on dimensional stability and strength property. Bioresour Technol 73:179–181

    Article  CAS  Google Scholar 

  • Gérard J, Guibal D, Paradis S, Cerre JC (2016) Atlas des bois tropicaux : Caractéristiques technologiques et utilisations. [Atlas of tropical woods: technological characteristics and uses] Editions Quae. Versailles

  • Gérardin P (2016) New alternatives for wood preservation based on thermal and chemical modification of wood—a review. Ann for Sci 73:559–570. https://doi.org/10.1007/s13595-015-0531-4ï

    Article  Google Scholar 

  • Haag V, Koch G, Melcher E, Welling J (2020) Characterization of the wood properties of cedrelinga cateniformis as substitute for timbers used for window manufacturing and outdoor applications. Maderas: Ciencia y Tecnologia 22:23–36. https://doi.org/10.4067/S0718-221X2020005000103

  • Herold N, Dietrich T, Grigsby WJ, Franich RA, Winkler A, Buchelt B, Pfriem A (2013) Effect of maleic anhydride content and ethanol dilution on the polymerization of furfuryl alcohol in wood veneer studied by differential scanning calorimetry. BioResources 8:1064–1075

    Article  Google Scholar 

  • Hill CAS (2006) Thermal modification of wood. In: Stevens C (eds) Wood modification: chemical. Thermal and other processes. John Wiley & Sons. Ltd. Chichester. UK, pp 99–127

  • Ibach RE, Rowell RM (2013) 16 Lumen Modifications. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. Second. CRC Press, Boca Raton, pp 599–625

    Google Scholar 

  • International Organization for Standardization (ISO) (2014) Metallic materials—Brinell hardness test—Part 1 : test method. DIN EN ISO 6506-1 1-22

  • Jang ES, Kang CW (2019) Changes in gas permeability and pore structure of wood under heat treating temperature conditions. J Wood Sci 65(37):2–9. https://doi.org/10.1186/s10086-019-1815-3

    Article  CAS  Google Scholar 

  • Kurkowiak K, Emmerich L, Militz H (2021) Wood chemical modification based on bio-based polycarboxylic acid and polyols-status quo and future perspectives. Wood Mater Sci Eng 17(5):1–15

    Google Scholar 

  • Kurkowiak K, Emmerich L, Simmering C, Militz H (2022) Wood modification with citric acid and sorbitol—a review and future perspectives. In: Proceedings of the Tenth European Conference on Wood Modification. Université de Lorraine. Nancy. pp 32–39

  • Leboucher B. (2014) Fabriquer en bois massif : anticiper les variations. Le Bouvet 21–33 [Solid wood manufacturing: anticipating variations. Le Bouvet 21–33]

  • L’Hostis C (2017) Développement de nouveaux traitements non-biocides de protection du bois basés sur la formation in-situ de polyesters bio-sourcés. [Development of new non-biocidal wood protection treatments based on the in-situ formation of bio-sourced polyesters] PhD, Université de Lorraine. http://docnum.univ-lorraine.fr/public/DDOC_T_2017_0319_L_HOSTIS.pdf. Accessed 9th Oct 2023

  • L’Hostis C, Thévenon MF, Fredon E, Gérardin P (2018) Improvement of beech wood properties by in situ formation of polyesters of citric and tartaric acid in combination with glycerol. Holzforschung 72:291–299. https://doi.org/10.1515/hf-2017-0081

    Article  CAS  Google Scholar 

  • Martha R, Mubarok M, Batubara I, Rahayu IS, Setiono L, Darmawan W, Obounou AF, George B, Gérardin C, Gérardin P (2021) Effect of furfurylation treatment on technological properties of short rotation teak wood. J Market Res 12:1689–1699. https://doi.org/10.1016/j.jmrt.2021.03.092

    Article  CAS  Google Scholar 

  • Mehr J, Vadenbo C, Steubing B, Hellweg S (2018) Environmentally optimal wood use in Switzerland—investigating the relevance of material cascades. Resour Conserv Recycl 131:181–191. https://doi.org/10.1016/j.resconrec.2017.12.026

    Article  Google Scholar 

  • Monteiro G (2018) Structural characterization of heat-treated poplar wood. J Eng 4:9–26. https://doi.org/10.24840/2183-6493_004.001_0002

    Article  Google Scholar 

  • Mubarok M, Dumarcay S, Militz H, Candelier K, Thévenon MF, Gérardin P (2019) Comparison of different treatments based on glycerol or polyglycerol additives to improve properties of thermally modified wood. Eur J Wood Prod 77:799–810. https://doi.org/10.1007/s00107-019-01429-4

    Article  CAS  Google Scholar 

  • Mubarok M, Militz H, Dumarçay S, Gérardin P (2020) Beech wood modification based on in situ esterification with sorbitol and citric acid. Wood Sci Technol 54:479–502. https://doi.org/10.1007/s00226-020-01172-7

    Article  CAS  Google Scholar 

  • Németh R, Horváth N, Fodor F, Báder M, Bak M (2020) Wood Modification for Under-Utilised Hardwood Species. In: IOP Conference Series: Earth and Environmental Science. 505. https://doi.org/10.1088/1755-1315/505/1/012017

  • Nepal P, Skog KE, Mc Keever DB, Bergman RD, Karen L, Robert C (2016) Carbon mitigation impacts of increased softwood lumber and structural panel use for nonresidential construction in the United States. For Prod J 66:77–87. https://doi.org/10.13073/FPJ-D-15-00019

    Article  CAS  Google Scholar 

  • Ninane M, Pollet C, Hébert J, Jourez B (2021) Physical, mechanical and decay resistance properties of heat-treated wood by Besson® process of three European hardwood species. Biotechnologie, Agronomie, Société et Environnement 25:129–139. https://doi.org/10.25518/1780-4507.19050

    Article  Google Scholar 

  • Parobek J, Paluš H, Moravčík M, Kovalčík M, Dzian M, Murgaš V, Šimo-Svrček S (2019) Changes in carbon balance of harvested wood products resulting from different wood utilization scenarios. Forests 10(7):590. https://doi.org/10.3390/f10070590

    Article  Google Scholar 

  • Salman S, Thévenon MF, Pétrissans A, Dumarçay S, Candelier K, Gérardin P (2017) Improvement of the durability of heat-treated wood against termites. Maderas: Ciencia y Tecnologia 19:317–328. https://doi.org/10.4067/S0718-221X2017005000027

  • Sandberg D, Kutnar A, Mantanis G (2017) Wood modification technologies—a review. Iforest 10:895–908

    Article  Google Scholar 

  • Schwab E (1990) Die Härte von Laubhölzern für die Parkettherstellung. Holz Als Roh- Und Werkstoff 48:47–51. https://doi.org/10.1007/BF02610703

    Article  Google Scholar 

  • Sejati PS, Imbert A, Gérardin-Charbonnier C, Dumarçay S, Fredon E, Masson E, Nandika D, Priadi T, Gérardin P (2017) Tartaric acid catalyzed furfurylation of beech wood. Wood Sci Technol 51:379–394. https://doi.org/10.1007/s00226-016-0871-8ï

    Article  CAS  Google Scholar 

  • Shi J, Peng J, Huang Q, Huang Q, Cai L, Shi SQ (2020) Fabrication of densified wood via synergy of chemical pretreatment. Hot-pressing and post mechanical fixation. J Wood Sci 66:1–9. https://doi.org/10.1186/s10086-020-1853-x

    Article  CAS  Google Scholar 

  • Silva C, Branco JM, Camões A, Lourenço PB (2014) Dimensional variation of three softwood due to hygroscopic behavior. Constr Build Mater 59:25–31. https://doi.org/10.1016/j.conbuildmat.2014.02.037

    Article  Google Scholar 

  • Sivonen H, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654

    Article  CAS  Google Scholar 

  • Srinivas K, Pandey KK (2012) Effect of heat treatment on color changes. Dimensional stability. and mechanical properties of wood. J Wood Chem Technol 32:304–316. https://doi.org/10.1080/02773813.2012.674170

    Article  CAS  Google Scholar 

  • Todaro L, Liuzzi S, Pantaleo AM, Lo GV, Moretti N, Stefanizzi R (2015) Thermo-modified native black poplar (Populus nigra l.) wood as an insulation material. Iforest 14:268–273. https://doi.org/10.3832/ifor3710-014

    Article  Google Scholar 

  • Van Benthem M, Kremers J, Oldenburger J, Stam N, Sleurink N (2018) Les importations de bois tropicaux en Europe : à quel point sont-elles durables ? [Tropical wood imports into Europe: how sustainable are they?] https://www.idhsustainabletrade.com/uploaded/2018/08/EU-market-share-of-verified-sustainable-tropical-timber_IDH_STTC_Probos-report_June_2018_FR.pdf

  • Xu J, Zhang Y, Shen Y, Li C, Wang Y, Ma Z, Sun W (2019) New perspective on wood thermal modification: Relevance between the evolution of chemical structure and physical-mechanical properties and online analysis of release of VOCs. Polymers 11:1145. https://doi.org/10.3390/polym11071145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zauer M, Pfriem A, Wagenführ A (2013) Toward improved understanding of the cell-wall density and porosity of wood determined by gas pycnometry. Wood Sci Technol 47:1197–1211. https://doi.org/10.1007/s00226-013-0568-1

    Article  CAS  Google Scholar 

  • Zhang X, Chen J, Dias AC, Yang H (2020) Improving carbon stock estimates for in-use harvested wood products by linking production and consumption—a global case study. Environ Sci Technol 54:2565–2574. https://doi.org/10.1021/acs.est.9b05721

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the Chambre Franco-Allemande de Commerce et d’Industrie (CFACI). Central Innovation Program for SMEs (ZIM) in Germany and Banque Publique d'Investissement (BPI) in France for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

MJ, AP, and PG define and supervise the research program. JD, TB and CM did experimental work. JD write the first draft of the paper. MC. PJM, RR, EF, TB, CM, MJ, AP, reviewed the article. PG and JD reviewed and validated the last draft of the paper.

Corresponding author

Correspondence to Philippe Gérardin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damay, J., Bender, T., Munk, C. et al. Properties improvement of seven hardwood species by combination of thermal and chemical modifications. Eur. J. Wood Prod. 82, 93–106 (2024). https://doi.org/10.1007/s00107-023-02000-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-023-02000-y

Navigation