Skip to main content
Log in

Feasibility of incorporating thermally treated lignocellulosic waste in particleboard composites

  • Original Article
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

To replace Pinus taeda wood particles in particleboard manufacturing, thermally treated rice husk was studied, a little-valued raw material, renewable and abundant. This study aimed to evaluate the effect of the addition of thermally treated rice husk on the physical and mechanical properties and resistance to dry-wood termites (Cryptotermes brevis) of particleboard. For the thermal treatment, three mixing proportions of thermally treated rice husk (10%, 20% and 30%), plus the control consisting of 100% natural pine particles, were used. The thermal treatment was carried out at a temperature of 150 °C during two hours. The particleboard was manufactured by compression molding and using phenol-formaldehyde adhesive. The results show that the increase in thermally treated rice husk has no effect on the physical properties of swelling in thickness of the boards; the water absorption parameters after 2 h increased significantly by 7.9% with the addition of 30% thermally treated rice husk. The boards met the minimum requirements for static bending of the Brazilian standard, but not for front screw removal. Addition of 30% thermally treated rice husk improved the biological durability of the boards to dry-wood termites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdulqader AA (2021) Efficient utilization of corn stalk and poplar planer shavings in manufacturing particleboard. Maderas-Cienc Tecnol 23:1–10. https://doi.org/10.4067/s0718-221x2021000100449

    Article  CAS  Google Scholar 

  • ABNT (2018) NBR 14810-2:2018: Painéis de partículas de média densidade - Requisitos e métodos de ensaio (Medium Density Particleboard - Requirements and Test Methods). Associação Brasileira de Normas Técnicas. Brazil. (in Portuguese)

  • Abu-Zarifa A, Abu-Shammala M, Al-Sheikh A (2018) Sustainable manufacturing of particleboard from sawdust and agricultural wastes mixed with recycled plastics. Am J Environ Eng 8(5):174–180. https://doi.org/10.5923/j.ajee.20180805.02

    Article  Google Scholar 

  • Aizat AG, Paiman B, Lee SH, Zaidon A (2019) Physico-mechanical properties and formaldehyde emission of rubberwood particleboard made with UF resin admixed with ammonium and aluminium-based hardeners. Pertanika J Sci Technol 27(1):473–488

    Google Scholar 

  • ANSI (1999) A-208.1: Mat-formed wood particleboard - Specification. American National Standards Institute, Washington: EUA

    Google Scholar 

  • ASTM (2014) D-143:21: Standard test methods for small clear specimens of timber. American Society for Testing and Materials, West Conshohocken: EUA

    Google Scholar 

  • ASTM (2015) D-4531:15: Standard test methods for bulk and dry density of peat and peat products. American Society for Testing and Materials, West Conshohocken: EUA

    Google Scholar 

  • Ayrilmis N, Buyuksari U (2011) Enhancement of dimensional stability of biocomposites containing agricultural waste by heat-treatment method. Dry Technol 29(5):591–598. https://doi.org/10.1080/07373937.2010.518328

    Article  CAS  Google Scholar 

  • Boon JG, Hashim R, Danish M, Nadhari WNAW (2019) Physical and mechanical properties of binderless particleboard made from steam-pretreated oil palm trunk particles. J Compos Sci 3(2):46–51. https://doi.org/10.3390/jcs3020046

    Article  CAS  Google Scholar 

  • Brito FMS, Bortoletto Júnior G, Paes JB, Belini UL, Tomazello-Filho M (2020) Technological characterization of particleboards made with sugarcane bagasse and bamboo culm particles. Constr Build Mater 262:120501. https://doi.org/10.1016/j.conbuildmat.2020.120501

    Article  Google Scholar 

  • César AAdaS, Bufalino L, Mendes LM, Mesquita RG, de Protásio A, de Mendes T, Andrade RF LMF (2017) Transforming rice husk into a high-added value product: Potential for particleboard production. Ciênc Florest 27(1):303–313. https://doi.org/10.5902/1980509826468

    Article  Google Scholar 

  • Ciannamea EM, Marin DC, Ruseckaite RA, Stefani PM (2017) Particleboard based on rice husk: Effect of binder content and processing conditions. J Renew Mater 5(5):357362. https://doi.org/10.7569/JRM.2017.634125

    Article  Google Scholar 

  • Colli A, Nascimento AM, Xavier LM, Rubim IB (2007) Propriedades físico-mecânicas e preservação, com boro e tanino, do Bambusa tuldoides (Munro) (Physical and mechanical properties and preservation, with boron and tannin, of the Bambusa tuldoides (Munro)). Floresta e Ambient 14(1):56–64 (in Portuguese with abstract in English)

    Google Scholar 

  • Curling SF, Murphy RJ (2002) The use of the Decay Susceptibility Index (DSI) in the evaluation of biological durability tests of wood based board materials. Holz Roh- Werkst 60:224–226

    Article  Google Scholar 

  • Dubey MK, Pang S, Walker J (2012) Changes in chemistry, color, dimensional stability and fungal resistance of Pinus radiata D. Don wood with oil heat-treatment. Holzforschung 66(1):49–57. https://doi.org/10.1515/HF.2011.117

    Article  CAS  Google Scholar 

  • Dukarska D, Bartkowiak M, Stachowiak-Węcek A (2015) White mustard straw as an alternative raw material in the manufacture of particleboards resinated with different amounts of urea-formaldehyde resin. Drewno 58(194):49–63. https://doi.org/10.12841/wood.1644-3985.089.04

    Article  Google Scholar 

  • Ferrandez-Villena M, Ferrandez-Garcia CE, Garcia-Ortuño T, Ferrandez-Garcia A, Ferrandez-Garcia MT (2020) The influence of processing and particle size on binderless particleboards made from Arundo donax L. rhizome. Polymers 12(3):696–708. https://doi.org/10.3390/polym12030696

    Article  PubMed Central  CAS  Google Scholar 

  • Fiorelli J, Bueno SB, Cabral MR (2019) Assessment of multilayer particleboards produced with green coconut and sugarcane bagasse fibers. Constr Build Mater 205:1–9. https://doi.org/10.1016/j.conbuildmat.2019.02.024

    Article  CAS  Google Scholar 

  • Freire C, de Silva S, Scatolino DW, César MV, Bufalino AA da, Mendes L LM (2011) Propriedades físicas de painéis aglomerados comerciais confeccionados com bagaço de cana e madeira. (Physical properties of commercial particle-boards made of sugarcane bagasse and wood). Floresta e Ambient 18(2):178–185. https://doi.org/10.4322/floram.2011.036(in Portuguese with abstract in English)

    Article  Google Scholar 

  • Gerardi V, Minelli F, Viggiano D (1998) Steam treated rice industry residues as an alternative feedstock for the wood based particleboard industry in Italy. Biomass Bioenergy 14(3):295–299. https://doi.org/10.1016/S0961-9534(97)10042-3

    Article  CAS  Google Scholar 

  • Gonçalves FG, Paes JB, Lopez YM, Segundinho PG, de Oliveira A, de Fassarella RGE, Chaves MV, Brito ILS, Martins AS RSF (2021) Resistance of particleboards produced with ligno-cellulosic agro-industrial wastes to fungi and termites. Int Biodeterior Biodegrad 157:105159. https://doi.org/10.1016/j.ibiod.2020.105159

    Article  CAS  Google Scholar 

  • Guler C, Bektas I, Kalaycioglu H (2006) The experimental particleboard manufacture from sunflower stalks (Helianthus annuus L.) and calabrian pine (Pinus brutia Ten.). For Prod J 56(4):56–60

    Google Scholar 

  • Huang L, Xia P, Liu Y, Fu Y, Jiang Y, Liu S, Wang X (2016) Production of biodegradable oard using rape straw and analysis of mechanical properties. BioResources 11(1):772–785. https://doi.org/10.15376/biores.11.1.772-785

    Article  CAS  Google Scholar 

  • Hýsek Å, Podlena M, Bartsch H, Wenderdel C, Böhm M (2018) Effect of wheat husk surface pre-treatment on the properties of husk-based composite materials. Ind Crops Prod 125:105–113. https://doi.org/10.1016/j.indcrop.2018.08.035

    Article  CAS  Google Scholar 

  • IPT (1980) IPT N. 1157: Ensaio acelerado da resistência natural ou de madeira preservada ao ataque de térmitas do gênero Cryptotermes (Fam. Kalotermitidae) (Accelerated natural or preserved test wood resistance to the attack of termites of the genus Cryptotermes (Fam. Kalotermitidae)). Instituto de Pesquisas Tecnológicas de São Paulo, Brazil. (in Portuguese)

  • Kariuki SW, Wachira J, Kawira M, Murithi G (2020) Crop residues used as lignocellulose materials for particleboards formulation. Heliyon 6(9):e05025. https://doi.org/10.1016/j.heliyon.2020.e05025

    Article  PubMed Central  PubMed  Google Scholar 

  • Kose C, Terzi E, Büyüksarı Ü, Avcı E, Ayrılmış N, Kartal SN, Imamura Y (2011) Particleboard and MDF panels made from a mixture of wood and pinecones: Resistance to decay fungi and termites under laboratory conditions. BioResources 6(2):2045–2054

    CAS  Google Scholar 

  • Kurokochi Y, Sato M (2015) Effect of surface structure, wax and silica on the properties of binderless board made from rice straw. Ind Crops Prod 77:949–953. https://doi.org/10.1016/j.indcrop.2015.10.007

    Article  CAS  Google Scholar 

  • Kusumah SS, Umemura K, Guswenrivo I, Yoshimura T, Kanayama K (2017) Utilization of sweet sorghum bagasse and citric acid for manufacturing of particleboard II: influences of pressing temperature and time on particleboard properties. J Wood Sci 63:161–172. https://doi.org/10.1007/s10086-016-1605-0

    Article  CAS  Google Scholar 

  • Li X, Cai Z, Winandy JE, Basta AH (2011) Effect of oxalic acid and steam pretreatment on the primary properties of UF-bonded rice straw particleboards. Ind Crops Prod 33(3):665–669. https://doi.org/10.1016/j.indcrop.2011.01.004

    Article  CAS  Google Scholar 

  • Liao R, Xu J, Umemura K (2016) Low-density sugarcane bagasse particleboard bonded with citric acid and sucrose: effect of board density and additive content. BioResources 11(1):2174–2185

    Article  CAS  Google Scholar 

  • Lui FHY, Kurokochi Y, Narita H, Saito Y, Sato M (2018) The effects of chemical components and particle size on the mechanical properties of binderless boards made from oak (Quercus spp.) logs degraded by shiitake fungi (Lentinula edodes). J Wood Sci 64:246–255. https://doi.org/10.1007/s10086-018-1695-y

    Article  CAS  Google Scholar 

  • Maistrello L (2018) Termites and standard norms in wood protection: A Proposal targeting drywood termites. In: Khan M, Ahmad W (eds) Termites and Sustainable Management. Springer International Publishing, Cham, pp 261–287. https://doi.org/10.1007/978-3-319-68726-1_12

    Chapter  Google Scholar 

  • Martins RSF, Gonçalves FG, Lelis RCC, Segundinho PGA, Nunes AM, Vidaurre GB, Chaves ILS, Santiago SB (2020) Physical properties and formaldehyde emission in particleboards of Eucalyptus sp. and ligno-cellulosic agro-industrial waste. Sci For 48(125):e2926. https://doi.org/10.18671/scifor.v48n125.13

    Article  Google Scholar 

  • Martins RSF, Gonçalves FG, Segundinho PGA, Lelis RCC, Paes JB, Lopez YM, Chaves ILS, de Oliveira RGE (2021) Investigation of agro-industrial lignocellulosic wastes in fabrication of particleboard for construction use. J Build Eng 43:102903. https://doi.org/10.1016/j.jobe.2021.102903

    Article  Google Scholar 

  • Melo RR (2009) Propriedades físico-mecânicas e resistência a biodeterioradores de chapas aglomeradas constituídas por diferentes proporções de madeira e casca de arroz. (Physical-mechanical properties and decay resistance of wood and rice husk particleboard in different proportions). Dissertação de Mestrado, Universidade Federal de Santa Maria, Brasil. (in Portuguese with abstract in English)

  • de Melo RR, Santini EJ, Haselein CR, Garlet A, Paes JB, Stangerlin DM (2010) Resistência de painéis aglomerados produzidos com diferentes proporções de madeira e casca de arroz a fungos e cupins xilófagos. (Decay and termite resistance of particleboard made with different proportions of wood and rice husk) Ciênc. Florest 20(3):501–511. https://doi.org/10.5902/198050982064(in Portuguese with abstract in English)

    Article  Google Scholar 

  • de Melo RR, Santini EJ, Haselein CR, Stangerlin DM (2009) Propriedades físico-mecânicas de painéis aglomerados produzidos com diferentes proporções de madeira e casca de arroz. (Properties of wood and rice husk particleboard in different proportions). Ciênc Florest 19(4):449–460. https://doi.org/10.5902/19805098899(in Portuguese with abstract in English)

    Article  Google Scholar 

  • Melo RR, Stangerlin DM, Santana RRC, Pedrosa TD (2015) Decay and termite resistance of particleboard manufactured from wood, bamboo and rice husk. Maderas Cienc y Tecnol 17(1):55–62. https://doi.org/10.4067/S0718-221X2015005000006

    Article  Google Scholar 

  • Menezes WM (2017) Efeito da modificação térmica em escala industrial na qualidade da madeira de Tectona grandis Linn. F. (The effect of thermal modification in industrial scale on wood quality of Tectona grandis Linn. F.) Tese (Programa de Pós-Graduação em Engenharia Florestal) - Universidade Federal de Santa Maria. Brasil (in Portuguese with abstract in English)

  • Miller ZD, Peralta P, Mitchell P, Kelley SS, Chiang V, Pearson L, Rottmann W, Cunningham M, Peszlen I (2019) Anatomical physical, anatomical and mechanical properties of transgenic loblolly pine (Pinus taeda L.) modified for increased density. Wood Fiber Sci 51(2):173–182. https://doi.org/10.22382/WFS-2019-018

    Article  CAS  Google Scholar 

  • Mirski R, Dziurka D, Banaszak A (2018) Properties of particleboards produced from various lignocellulosic particles. BioResources 13(4):7758–7765. https://doi.org/10.15376/biores.13.4.7758-7765

    Article  CAS  Google Scholar 

  • Morais WWC, Haselein CR, Susin F, Vivian MA, Morais JBF (2015) Propriedades físico-mecânicas de painéis aglomerados com Bambusa tuldoides e Pinus taeda. (Mechanical and physical properties of particleboard with Bambusa tuldoides and Pinus taeda). Ciênc Florest 25(4):1015–1026. https://doi.org/10.5902/1980509820662(in Portuguese with abstract in English)

    Article  Google Scholar 

  • Narciso NRP, Reis AHS, Mendes JF, Nogueira ND, Mendes RF (2021) Potential for the use of coconut husk in the production of medium density particleboard. Waste Biomass Valorization 12:1647–1658. https://doi.org/10.1007/s12649-020-01099-x

    Article  CAS  Google Scholar 

  • Ndazi BS, Karlsson S, Tesha JV, Nyahumwa CW (2007) Chemical and physical modifications of rice husks for use as composite panels. Compos Part A Appl Sci Manuf 38(3):925–935. https://doi.org/10.1016/j.compositesa.2006.07.004

    Article  CAS  Google Scholar 

  • Paes JB (2002) Resistência natural da madeira de Corymbia maculata (Hook.) K.D.Hill & L.A.S. Johnson a fungos e cupins xilófagos, em condições de laboratório (Wood natural resistance of Corymbia maculata (Hook.) K.D.Hill & L.A.S Johnson to wood destroying fungi and termites, under laboratory tests). Rev. Árvore 26(6):761–767. https://doi.org/10.1590/S0100-67622002000600012 (in Portuguese with abstract in English)

  • Paes JB, de Medeiros Neto PN, de Lima CR, Freitas M, de Diniz F CEF (2013) Efeitos dos extrativos e cinzas na resistência natural de quatro madeiras a cupins xilófagos.(Effects of extractives and ash on natural resistance of four woods to xylophogous termites). Cerne 19(3):399–405. https://doi.org/10.1590/S0104-77602013000300006(in Portuguese with abstract in English)

    Article  Google Scholar 

  • Pan M, Zhou D, Ding T, Zhou X (2010) Water resistance and some mechanical properties of rice straw fiberboarss affected by thermal modification. BioResources 5(2):758–769

    CAS  Google Scholar 

  • Torkaman J (2019) Mechanism of bondability in Uf-bonded rice husk particle boards by isocyanate. J Appl Sci 19(3):247–251. https://doi.org/10.3923/jas.2019.247.251

    Article  CAS  Google Scholar 

  • Wu T, Wang X, Kito K (2015) Effects of pressures on the mechanical properties of corn straw bio-board. Eng Agric Environ Food 8(3):123–129. https://doi.org/10.1016/j.eaef.2015.07.003

    Article  Google Scholar 

  • Yingprasert W, Matan N, Chaowana P (2015) Fungal resistance and physico-mechanical properties of cinnamon oil- and clove oil-treated rubberwood particleboards. J Trop For Sci 27:69–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Gomes Gonçalves.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, F.G., Alves, S.D., de Alcântara Segundinho, P.G. et al. Feasibility of incorporating thermally treated lignocellulosic waste in particleboard composites. Eur. J. Wood Prod. 80, 647–656 (2022). https://doi.org/10.1007/s00107-022-01804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-022-01804-8

Navigation