Skip to main content
Log in

A review of the long-term effects of humidity on the mechanical properties of wood and wood-based products

  • Review Article
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

A Correction to this article was published on 11 February 2021

This article has been updated

Abstract

Wood is an indispensable building material for modern structures. As a kind of biological material, it is more likely than other materials to be affected by the environment. It has been shown that the effect of long-term exposure to humidity will accelerate the decrease in mechanical properties and long-term strength of wood and wood-based products. The most commonly used methods for studying the deterioration of the mechanical properties of wood and wood-based products under the action of long-term humidity exposure are artificially accelerated aging and outdoor exposure. Many scholars have studied various artificially accelerated aging tests, which can accelerate the aging of wood and wood-based products and save substantial time. However, the results of outdoor exposure tests can be better correlated with the aging of the materials in the actual environment. Scholars have established a relationship between artificially accelerated aging tests and the results of outdoor exposure tests and have studied the results of outdoor exposure tests under different climatic conditions. This paper not only reviews the artificially accelerated aging tests used for wood and wood-based products in the past twenty years, but also summarizes their characteristics and application scope. In addition, the relationship between the outdoor exposure tests and the artificially accelerated aging tests is reviewed. At the end of the paper, the challenges and prospects for the future works are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  • Alexopoulos J (1992) Accelerated aging and outdoor weathering of aspen waferboard. For Prod J 42(2):15–22

    CAS  Google Scholar 

  • Angst-Nicollier V (2012) Moisture induced stresses in glulam: effect of cross section geometry and screw reinforcement. Dissertation, Norwegian University of Science and Technology

  • Angst-Nicollier V, Malo KA (2013) Moisture-induced stresses in glulam cross sections during wetting exposures. Wood Sci Technol 47(2):227–241. https://doi.org/10.1007/s00226-012-0493-8

    Article  CAS  Google Scholar 

  • APA (1994) The Engineered Wood Association: Performance standards and qualification policy for structural-use panels

  • ASTM D1037 (1996) American Society for Testing and Materials: Standard methods of evaluating the properties of wood-based fiber and particle panel materials

  • ASTM D 3434 (2000) American Society for Testing and Materials: Standard test method for multiple-cycle accelerated aging test

  • Barrett JD, Foschi RO (1987) Duration of load and probability of failure in wood. Part 1: modelling creep rupture. Can J Civil Eng 5(4):505–514

    Article  Google Scholar 

  • Bekhta P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57:539–546. https://doi.org/10.1515/HF.2003.080

    Article  CAS  Google Scholar 

  • Blanchet P, Gendron G, Coultier A et al (2005) Numerical prediction of engineered wood flooring deformation. Wood Fiber Sci 37(3):484–496

    CAS  Google Scholar 

  • Böhm HJ (2016) A short introduction to basic aspects of continuum micromechanics. Cdl-fmd Rep. https://doi.org/10.13140/RG.2.1.3025.7127

    Article  Google Scholar 

  • Brischke C (2007) Investigation of decay influencing factors for service life prediction of exposed wooden components. Dissertation, University of Hamburg.

  • Brischke C, Rapp AO (2008a) Influence of wood moisture content and wood temperature on fungal decay in the field: observations indifferent micro-climates. Wood Sci Technol 42:663–677

    Article  CAS  Google Scholar 

  • Brischke C, Rapp AO (2008b) Dose-response relationships between wood moisture content, wood temperature and fungal decay determined for 23 European field test sites. Wood Sci Technol 42(6):507–518. https://doi.org/10.1007/s00226-008-0191-8

    Article  CAS  Google Scholar 

  • Brischke C, Rapp AO (2010) Service life prediction of wooden components—part 1: determination of dose response functions for above ground decay. The International Research Group on Wood Protection, IRG/WP/10-20439, Stockholm

  • Brischke C, Lampen SC (2014) Resistance based moisturecontent measurements on native, modified, and preservativetreated wood. Eur J Wood Prod 72:289–292. https://doi.org/10.1007/s00107-013-0775-3

    Article  CAS  Google Scholar 

  • Brischke C, Meyer-Veltrup L (2015) Moisture content and decay of differently sized wooden components during 5 years of outdoor exposure. Eur J Wood Prod 73(6):719–728. https://doi.org/10.1007/s00107-015-0960-7

    Article  CAS  Google Scholar 

  • Brischke C, Meyer-Veltrup L (2016) Modelling wood decay caused by brown rot fungi. J Mech Mater Struct 49:3281–3291. https://doi.org/10.1617/s11527-015-0719-y

    Article  Google Scholar 

  • Brischke C, Stricker S, Meyer-Veltrup L (2019) Changes in sorption and electrical properties of wood caused by fungal decay. Holzforschung 73(5):445–455. https://doi.org/10.1515/hf-2018-0171

    Article  CAS  Google Scholar 

  • BS EN1087–1 (1995) British Standard: Particleboards-Determination of moisture resistance

  • CAN/CSA-0188 (1978) Canada Standards Association: Standard test methods for mat-formed wood particleboards and waferboard

  • Caliri MF, Ferreira AJM, Tita V (2016) A review on plate and shell theories for laminated and sandwich structures highlighting the finite element method. Compos Struct 156:63–77

    Article  Google Scholar 

  • Chang FC, Lam F (2018) Effects of temperature-induced strain on creep behavior of wood-plastic composites. Wood Sci Technol 52(5):1213–1227. https://doi.org/10.1007/s00226-018-1033-y

    Article  CAS  Google Scholar 

  • Chiniforush AA, Akbarnezhad A, Valipour H et al (2019) Moisture and temperature induced swelling/shrinkage of softwood and hardwood glulam and LVL: an experimental study. Constr Build Mater 207:70–83. https://doi.org/10.1016/j.conbuildmat.2019.02.114

    Article  CAS  Google Scholar 

  • Chomcharn A, Skaar C (1983) Dynamic sorption and hygroexpansivity of wood wafers exposed to sinusoidally varying humidity. Wood Sci Technol 17(4):259–277

    Article  Google Scholar 

  • De Borst R, Crisfield M, Remmers JJC et al (2012) Nonlinear finite element analysis of solids and structures. Wiley, New York

    Book  Google Scholar 

  • DIN 68763 (1990) Deutsche Norm German Standard European Standard: flat pressed particleboard for use in building construction: concepts, requirements, testing and inspection

  • Drago A, Pindera MJ (2007) Micro-macromechanical analysis of heterogeneous materials: macroscopically homogeneous vs periodic microstructures. Compos Sci Technol 67(6):1243–1263

    Article  CAS  Google Scholar 

  • Eitelberger J, Bader TK, Borst K et al (2012) Multiscale prediction of viscoelastic properties of softwood under constant climatic conditions. Comput Mater Sci 55:303–312. https://doi.org/10.1016/j.commatsci.2011.11.033

    Article  CAS  Google Scholar 

  • Eitelberger J, Hofstetter K (2011) Prediction of transport properties of wood below the fiber saturation point—a multiscale homogenization approach and its experimental validation. Part II: Steady state moisture diffusion coefficient. Compos Sci Technol 71(2):145–151. https://doi.org/10.1016/j.compscitech.2010.11.006

    Article  CAS  Google Scholar 

  • Eitelberger J, Hofstetter K, Dvinskikh S (2011) A multi-scale approach for simulation of transient moisture transport processes in wood below the fiber saturation point. Compos Sci Technol 71:1727–1738. https://doi.org/10.1016/j.compscitech.2011.08.004

    Article  CAS  Google Scholar 

  • Eitelberger J, Svensso S, Hofstetter K (2011) Theory of transport processes in wood below the fiber saturation point. Physical background on the microscale and its macroscopic description. Holzforschung 65(3):337–342. https://doi.org/10.1515/HF.2011.041

    Article  CAS  Google Scholar 

  • Ekevad M, Axelsson A (2012) Variation of modulus of elasticity in the tangential direction with moisture content and temperature for norway spruce (Picea Abies). Bioresources 7(4):4730–4743. https://doi.org/10.15376/biores.7.4.4730-4743

    Article  CAS  Google Scholar 

  • Ekevad M, Lundgren N, Flodin J (2011) Drying shrinkage of sawn wood of Norway spruce (Picea abies): industrial measurements and finite element simulations. Wood Mat Sci Eng 6(1–2):41–48. https://doi.org/10.1080/17480272.2010.523121

    Article  CAS  Google Scholar 

  • EN 321 (1993) European Standard: Fiberboards: cyclic tests in humid conditions

  • Fragiacomo M, Fortino S, Tononi D et al (2011) Moisture induced stresses perpendicular to grain in cross-sections of wood members exposed to different climates. Eng Struct 33(11):3071–3078. https://doi.org/10.1016/j.engstruct.2011.06.018

    Article  Google Scholar 

  • Frandsen HL (2007) Selected constitutive models for simulating the hygromechanical response of wood. Dissertation, Aalborg University

  • Fortino S, Hradil P, Metelli G (2019) Moisture-induced stresses in large glulam beams. Case study: Vihantasalmi Bridge. Wood Mat Sci Eng 14(5):366–380. https://doi.org/10.1080/17480272.2019.1638828

    Article  CAS  Google Scholar 

  • Fortino S, Mirianon F, Toratti T (2009) A 3D moisture-stress FEM analysis for time dependent problems in wood structures. Mech Time-Depend Mat 13(4):333–356. https://doi.org/10.1007/s11043-009-9103-z

    Article  Google Scholar 

  • Fridley KJ, Tang RC, Soltis LA (1992) Hygrothermal effects on load-duration behaviour of structure lumber. J Struct Eng 118(4):1023–1038

    Article  Google Scholar 

  • Gamstedt EK, Bader TK, Borst K (2013) Mixed numerical-experimental methods in wood micromechanics. Wood Sci Technol 47(1):183–202. https://doi.org/10.1007/s00226-012-0519-2

    Article  CAS  Google Scholar 

  • Gerhards CC, Link CL (1987) A cumulative damage model to predict load duration characteristics of lumber. Wood Fiber Sci 19(2):147–164

    Google Scholar 

  • Gindl W, Sretenovic A, Vincenti A et al (2005) Direct measurement of strain distribution along a wood bond line. Part 2: effects of adhesive penetration on strain distribution. Holzforschung 59(3):307–310

    Article  CAS  Google Scholar 

  • Greil P, Lifka T, Kaindl A (1998) Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure. J Eur Ceram Soc 18(14):1961–1974. https://doi.org/10.1016/S0955-2219(98)00156-3

    Article  CAS  Google Scholar 

  • Hanhijärvi A (1995) Modelling of creep deformation mechanisms in wood. Dissertation, Technical Report no 231, VTT Technical Research Centre of Finland

  • Hanhijärvi A (2000a) Advances in the knowledge of the influence of moisture changes on the long-term mechanical performance of timber structures. J Mech Mater Struct 33:43–49. https://doi.org/10.1007/BF02481695

    Article  Google Scholar 

  • Hanhijärvi A (2000b) Computational method for predicting the long-term performance of timber beams in variable climates. J Mech Mater Struct 33:127–134. https://doi.org/10.1007/BF02484167

    Article  Google Scholar 

  • Hasegawa M (1996) Climate index on wood preservation. Wood Preserve 25(5):2–9

    Google Scholar 

  • Hassani MM, Wittel FK, Hering S et al (2015) Rheological model for wood. Comput Method Appl M 283:1032–1060. https://doi.org/10.1016/j.cma.2014.10.031

    Article  Google Scholar 

  • Hsieh TY, Chang FC (2018) Effects of moisture content and temperature on wood creep. Holzforschung 72(12):1071–1078. https://doi.org/10.1515/hf-2018-0056

    Article  CAS  Google Scholar 

  • Huacuijiaju (2018) Why does wood shrink and expand. Zhihu. https://zhuanlan.zhihu.com/p/22778637. Accessed 21 March 2018

  • Huc S (2019) Moisture-Induced Strains and Stresses in Wood. Dissertation, Uppsala University

  • Huang XZ (2009) The study on accelerated aging method and aging resistant performance of parallel bamboo strand lumber. Dissertation, Nanjing Forestry University

  • Huang YX (2016) Creep behavior of wood under cyclic moisture changes: interaction between load effect and moisture effect. J Wood Sci 62(5):392–399. https://doi.org/10.1007/s10086-016-1565-4

    Article  Google Scholar 

  • Ilaria S, Benedetto P (2001) Effect of surface conditions related to machining and air exposure on wettability of different Mediterranean wood species. Int J Adhes 31:743–753. https://doi.org/10.1016/j.ijadhadh.2011.07.002

    Article  CAS  Google Scholar 

  • Isaksson T, Brischke C, Thelandersson S (2012) Development of decay performance models for outdoor wood structures. Mater Struct 46:1209–1225. https://doi.org/10.1617/s11527-012-9965-4

    Article  Google Scholar 

  • JIS A-5908 (1994) Japanese Standards Association: JIS standard specification for particleboard

  • Joffre T, Neagu RC, Bardage SL et al (2014) Modelling of the hygroelastic behaviour of normal and compression wood tracheids. J Struct Biol 185(1):89–98

    Article  CAS  Google Scholar 

  • Jonsson J (2004) Internal stresses in the cross-grain direction in glulam induced by climate variations. Holzforschung 58(2):154–159. https://doi.org/10.1515/hf.2004.023

    Article  Google Scholar 

  • Knorz M, Niemz P, Van de Kuilen JW (2016) Measurement of moisture related strain in bonded ash depending on adhesive type and glueline thickness. Holzforschung 70(2):145–155. https://doi.org/10.1515/hf-2014-0324

    Article  CAS  Google Scholar 

  • Kojima Y, Shimoda T, Suzuki S (2012) Modifified method for evaluating weathering intensity using outdoor exposure tests on wood-based panels. J Wood Sci 58:525–531

    Article  Google Scholar 

  • Kojima Y, Shimoda T, Suzuki S (2011) Evaluation of the weathering intensity of wood-based panels under outdoor exposure. J Wood Sci 57:408–414. https://doi.org/10.1007/s10086-011-1197-7

    Article  Google Scholar 

  • Kojima Y, Suzuki S (2011a) Evaluating the durability of wood-based panels using internal bond strength results from accelerated aging treatments. J Wood Sci 57:7–13. https://doi.org/10.1007/s10086-010-1131-4

    Article  CAS  Google Scholar 

  • Kojima Y, Suzuki S (2011b) Evaluation of wood-based panel durability using bending properties after accelerated aging treatments. J Wood Sci 57:126–133. https://doi.org/10.1007/s10086-010-1146-x

    Article  CAS  Google Scholar 

  • Konnerth J, Gindl W (2006) Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation. Holzforschung 60(4):429–433

    Article  CAS  Google Scholar 

  • Konnerth J, Gindl W (2008) Observation of the influence of temperature on the mechanical properties of wood adhesives by nanoindentation. Holzforschung 62(6):714–717

    Article  CAS  Google Scholar 

  • Konnerth J, Gindl W, Müller U (2006) Elastic properties of adhesive polymers. I. Polymer films by means of electronic speckle pattern interferometry. J Appl Polym Sci 103(6):3936–3939

    Article  Google Scholar 

  • Konnerth J, Jäger A, Eberhardsteiner J et al (2006) Elastic properties of adhesive polymers. II. Polymer films and bond lines by means of nanoindentation. J Appl Polym Sci 102(2):1234–1239

    Article  CAS  Google Scholar 

  • Korai H, Kojima Y, Suzuki S (2015) Bending strength and internal bond strength of wood-based boards subjected to various exposure conditions. J Wood Sci 61:500–509. https://doi.org/10.1007/s10086-015-1494-7

    Article  CAS  Google Scholar 

  • Korai H, Nakao K, Matsui T et al (2017) Effects of climate change on reduction of internal bond strength of particleboard subjected to various climatic conditions in Japan. J Wood Sci 63:253–262. https://doi.org/10.1007/s10086-017-1622-7

    Article  Google Scholar 

  • Korai H, Saotome H, Ohmi M (2014) Effects of water soaking and outdoor exposure on modulus of rupture and internal bond strength of particleboard. J Wood Sci 60:127–133. https://doi.org/10.1007/s10086-013-1374-y

    Article  CAS  Google Scholar 

  • Korai H, Watanabe K (2015) Comparison between climatic factors and climate deterioration index on strength reduction of particleboards subjected to various climatic conditions in Japan. Eur J Wood Prod 73:563–571. https://doi.org/10.1007/s00107-015-0918-9

    Article  Google Scholar 

  • Kránitz K, Sonderegger W, Bues CT et al (2016) Effects of aging on wood: a literature review. Wood Sci Technol 50:7–22. https://doi.org/10.1007/s00226-015-0766-0

    Article  CAS  Google Scholar 

  • Lee SS, Pang SJ, Jeong GY (2019) Effects of size, species, and adjacent lamina on moisture-related strain in glulam wood and fiber science. Wood Fiber Sci 51(2):101–118

    Article  CAS  Google Scholar 

  • Lehmann WF (1978) Cyclic moisture conditions and their effect on strength and stability of structural fl akeboards. For Prod J 28:23–31

    Google Scholar 

  • Li L (2014). Numerical analysis of interfacial stresses and cupping of two-layer laminated densified wood products subjected to moisture and temperature fluctuations. Dissertation, Nanjing Forestry University

  • Li RR, Cao PX, Xu W et al (2018) Experimental and numerical study of moisture-induced stress formation in hexagonal glulam using x-ray computed tomography and finite-element analysis. Bioresources 13(4):7395–7403. https://doi.org/10.15376/biores.13.4.7395-7403

    Article  CAS  Google Scholar 

  • Li WZ, Bulcke J, De Windt I et al (2016) Moisture behavior and structural changes of plywood during outdoor exposure. Eur J Wood Prod 74(2):211–221. https://doi.org/10.1007/s00107-015-0992-z

    Article  CAS  Google Scholar 

  • Li ZR, Zhang J, Sun YF (2015) Influence of accelerated aging tests on properties of glued-laminated timber. For techno dev 29(1):94–97

    Google Scholar 

  • Liu ZT (2008) Synthesis, characterization and properties of hierarchical porous oxides derived from wood templates. Dissertation, Shanghai Jiao Tong University

  • Massaro FM, Malo KA (2019) Long-term behaviour of Norway spruce glulam loaded perpendicular to grain. Eur J Wood Prod 77:821–832. https://doi.org/10.1007/s00107-019-01437-4

    Article  CAS  Google Scholar 

  • Mcnatt JD, Link CL (1989) Analysis of ASTM D1037 accelerated aging test. For Prod J 39(10):51–57. https://doi.org/10.1007/BF02640153

    Article  CAS  Google Scholar 

  • Meyer-Veltrup L, Brischke C (2015) Fungal decay at differentmoisture levels of selected European-grown wood species. Int Biodeter Biodegr 103:23–29. https://doi.org/10.1016/j.ibiod.2015.04.009

    Article  Google Scholar 

  • Meyer-Veltrup L, Brischke C, Alfredsen G et al (2017) The combined effect of wetting ability and durability on outdoor performance of wood - development and verification of a new prediction approach. Wood Sci Technol 51:615–637. https://doi.org/10.1007/s00226-017-0893-x

    Article  CAS  Google Scholar 

  • Meyer-Veltrup L, Brischke C, Kallander B et al (2017) Testing the durability of timber above ground: evaluation of different test methods. Eur J Wood Prod 75(3):291–304. https://doi.org/10.1007/s00107-016-1137-8

    Article  Google Scholar 

  • Meyer-Veltrup L, Brischke C, Treu A et al (2016) Critical moisture conditions for fungal decay of modified wood by basidiomycetes as detected by pile tests. Holzforschung 70(4):331–339. https://doi.org/10.1515/hf-2015-0046

    Article  CAS  Google Scholar 

  • Miao P, Wang SL, Zhou FY (2015) Effect of environmental humidity on dimensional stability of white birch lumber. China For Prod Ind 42(2):11–14

    Google Scholar 

  • Mohammad FK, Zaidon A, Lee SH et al (2017) Effects of accelerated and outdoor aging on leachability and properties of compreg laminated sesenduk wood. J Trop For Sci 29(2):198–207

    Google Scholar 

  • Niklewski J, Fredriksson M, Isaksson T (2016) Moisture content prediction of rain-exposed wood: test and evaluation of a simple numerical model for durability applications. Build Environ 97:126–136. https://doi.org/10.1016/j.buildenv.2015.11.037

    Article  Google Scholar 

  • Niklewski J (2018) Durability of wood members: Moisture conditions and service life assessment of bridge detailing. Dissertation, Lund University

  • Norita H, Kojima Y, Suzuki S (2008) The aging effects of water immersion treatments in wet-bending for standardized testing of wood panels. J Wood Sci 54:121–127. https://doi.org/10.1007/s10086-007-0919-3

    Article  Google Scholar 

  • Ochoa OO, Reddy JN (1992) Finite element analysis of composite laminates. Solid mechanics and its applications. Springer, Dordrecht, pp 37–109

    Book  Google Scholar 

  • Paridah MT, Zaidon A, Chuo TW et al (2012) Accelerated and outdoor ageing of laminated veneer lumber and their correlations with strength and stiffness. J Trop For Sci 24(4):465–473

    Google Scholar 

  • Pavel Z, Tomas V, Jaromír F et al (2015) Diffusion-model-based risk assessment of moisture originated wood deterioration in historic buildings. Build Environ 94:218–230. https://doi.org/10.1016/j.buildenv.2015.08.004

    Article  Google Scholar 

  • Peng H, Jiang JL, Lu JX et al (2017) Application of time-temperature superposition principle to Chinese fir orthotropic creep. J Wood Sci 63(5):455–463. https://doi.org/10.1007/s10086-017-1635-2

    Article  Google Scholar 

  • Pfriem A, Buchelt B, Zauer M et al (2010) Comparative analysis of thermally modified andnative spruce loaded perpendicular to the grain. Eur J Wood Prod 68:267–270. https://doi.org/10.1007/s00107-010-0457-3

    Article  CAS  Google Scholar 

  • Poncsák S, Kocaefe D, Bouazara M et al (2006) Effect of high temperature treatment on themechanical properties of birch (Betula papyrifera). Wood Sci Technol 40:647–663. https://doi.org/10.1007/s00226-006-0082-9

    Article  CAS  Google Scholar 

  • Qin SJ, Yang N (2018) Strength degradation and service life prediction of timber in ancient Tibetan building. Eur J Wood Prod 76(2):731–747. https://doi.org/10.1007/s00107-017-1211-x

    Article  Google Scholar 

  • Rammerstorfer FG, Böhm HJ (2014) Micromechanics for macroscopic material description of FRPs. In: Hult J, Rammerstorfer FG (eds) Engineering mechanics of fibre reinforced polymers and composite structures. Springer, Vienna, pp 9–50

    Google Scholar 

  • Reddy JN (2014) An introduction to nonlinear finite element analysis: with applications to heat transfer. Dissertation, Oxford University

  • River BH (1994) Outdoor aging of wood-based panels and correlation with laboratory aging. For Prod J 44:11–12

    Google Scholar 

  • Salinas CH, Chavez CA, Perez-Pena N, Vargas H, Ananias RA (2020) Two-dimensional simulation of mechanical stresses during isothermal drying of Eucalyptus nitens wood. Wood Sci Technol 54:187–201. https://doi.org/10.1007/s00226-019-01147-3

    Article  CAS  Google Scholar 

  • Sandberg D, Haller P, Navi P (2013) Thermo-hydro and thermo-hydro-mechanical wood processing: an opportunity for future environmentally friendly wood products. Wood Mat Sci Eng 8:64–88

    Article  CAS  Google Scholar 

  • Scheffer TC (1979) A climate index for estimating potential for decay in wood structure above ground. For Prod J 21(10):25–31

    Google Scholar 

  • Sekino N, Sato H, Adachi K (2014) Evaluation of particleboard deterioration under outdoor exposure using several different types of weathering intensity. J Wood Sci 60:141–151. https://doi.org/10.1007/s10086-013-1384-9

    Article  Google Scholar 

  • Sepulveda-Villarroel V, Perez-Pena N, Salinas-Lira C et al (2016) The development of moisture and strain profiles during predrying of Eucalyptus nitens. Dry Technol 34(4):428–436. https://doi.org/10.1080/07373937.2015.1060490

    Article  CAS  Google Scholar 

  • Serrano E, Enquist B (2005) Contact-free measurement and non-linear finite element analyses of strain distribution along wood adhesive bonds. Holzforschung 59(6):641–646

    Article  CAS  Google Scholar 

  • Sonderegger W, Kránitz K, Bues CT et al (2015) Aging effects on physical and mechanical properties of spruce, fir and oak wood. J Cult Herit 16:883–889. https://doi.org/10.1016/j.culher.2015.02.002

    Article  Google Scholar 

  • Treu A, Zimmer K, Brischk C (2019) Durability and protection of timber structures in marine environments in europe: an overview. Bioresources 14(4):10161–10184. https://doi.org/10.15376/biores.14.4.Treu

    Article  Google Scholar 

  • Varanda LD, Alesi LS, Yamaji FM et al (2019) Mechanical properties of accelerated aging particleboards. Sci For 47(123):571–578

    Article  Google Scholar 

  • Way D, Sinha A, Kamke FA (2018) Laboratory and outdoor weathering of wood-composite I-joists. J Mater Civil Eng 30:7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002327

    Article  Google Scholar 

  • Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech 128(8):808–816

    Article  Google Scholar 

  • Zhang J (2013) The study on bonding property and aging resistant performance of glulam members Dissertation, Nanjing Forestry University

  • Zhang ZQ (2015) The study of hygrothemal aging of bamboo/wood composite electrothermal Plywood Dissertation, Chinese Academy of Forestry

  • Zhang XY(2012) Wood materials science. Douding. https://www.docin.com/p-398859191.html. Accessed 09 May 2012

  • Zhou HZ, Zhu EC, Fortino S et al (2010) Modelling the hygrothermal stress in curved glulam beams. J Strain Anal Eng 45(2):129–140. https://doi.org/10.1243/03093247JSA563

    Article  Google Scholar 

Download references

Acknowledgements

The National Key R&D Program of China (Grant No. 2017YFC0703505); The National Natural Science Foundation of China (Gran No. 54978038); The Overseas Expertise Introduction Project for Discipline Innovation (B13002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cao, X. & Liu, H. A review of the long-term effects of humidity on the mechanical properties of wood and wood-based products. Eur. J. Wood Prod. 79, 245–259 (2021). https://doi.org/10.1007/s00107-020-01623-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-020-01623-9

Navigation