Skip to main content
Log in

Effects of aging on wood: a literature review

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Knowledge of wood aging and the property changes of aged wood compared with recent wood are crucial for conservation of wooden cultural heritage objects and historic buildings constructed of wood and also for the reuse of old construction wood. Therefore, a thorough literature review is presented about the different aspects of wood aging to provide a database for further investigations. One focus lies on the different kinds of aging: natural aging under aerobic and anaerobic storage conditions in contrast to accelerated aging under heat treatment. Further, influencing factors like wood treatment and long-term loading on the aging process are discussed. Property changes of naturally aged wood that has been stored under aerobic conditions are also researched. The resulting chemical, physical, and mechanical changes are thus discussed as well as any changes in color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando K, Yoshihiko H, Sugihara M, Hirao S, Sasaki Y (2006) Microscopic processes of shearing fracture of old wood, examined using the acoustic emission technique. J Wood Sci 52:483–489

    Article  Google Scholar 

  • Attar-Hassan G (1976) The effect of ageing on the mechanical properties of Eastern white pine. Bull Assoc Preserv Technol 8(3):64–73

    Article  Google Scholar 

  • Baron T (2009) Untersuchungen an ungeschädigten und durch Pilzbefall geschädigten Nadelholzbauteilen mit ausgewählten Prüfverfahren (Investigations with selected test methods on undamaged softwood constructions and constructions damaged through fungal decay). (In German) Dissertation, Technische Universität Dresden

  • Barrett JD, Foschi RO (1978) Duration of load and probability of failure in wood. Part I. Modeling creep rupture. Can J Civil Eng 5(4):505–514

    Article  Google Scholar 

  • Bekhta P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57:539–546

    Article  CAS  Google Scholar 

  • Bekhta P, Niemz P (2006) Effect of high temperature on physical and mechanical properties of spruce wood. In: Kurjatko S, Kudela J, Lagana R (eds) Wood structure and properties ‘06. Arbora publishers, Zvolen, p 508

    Google Scholar 

  • Björdal CG (2012) Microbial degradation of waterlogged archaeological wood. J Cult Herit 13(3S):118–122

    Article  Google Scholar 

  • Bodig J, Jayne BA (1993) Mechanics of wood and wood composites. Krieger Publishing Company, Malabar

    Google Scholar 

  • Borgin K, Faix O, Schweers W (1975a) The effect of aging on lignins of wood. Wood Sci Technol 9:207–211

    Article  CAS  Google Scholar 

  • Borgin K, Parameswaran N, Liese W (1975b) The effect of aging on the ultrastructure of wood. Wood Sci Technol 9:87–98

    Article  Google Scholar 

  • Bourgois J, Janin G, Guyonnet R (1991) La mesure de couleur: une méthode d’étude et d’optimisation des transformations chimiques du bois thermolysé (The color measurement: A fast method to study and optimize the chemical transformations undergone in the thermally treated wood). Holzforschung 45:377–382

    Article  CAS  Google Scholar 

  • Brischke C, Welzbacher CR, Brandt K, Rapp AO (2007) Quality control of thermally modified timber: interrelationship between heat treatment intensities and CIE L*a*b* color data on homogenized wood samples. Holzforschung 61:19–22

    Article  CAS  Google Scholar 

  • Buck RD (1952) A note on the effect of age on the hygroscopic behavior of wood. Stud Conserv 1(1):39–44

    Article  CAS  Google Scholar 

  • Chang HT, Chang ST (2001) Correlation between softwood discoloration induced by accelerated lightfastness testing and by indoor exposure. Polym Degrad Stabil 72:361–365

    Article  CAS  Google Scholar 

  • Chen Y, Fan YM, Gao JM, Stark NM (2012) The effect of heat treatment on the chemical and color change of black locust (Robinia pseudoacacia) wood flour. Bioresources 7:1157–1170

    Google Scholar 

  • Chowdhury KA, Preston RD, White RK (1967) Structural changes in some ancient Indian timbers. Proc Roy Soc B 168:148–157

    Article  Google Scholar 

  • Clausnitzer K-D (1990) Historischer Holzschutz: Zur Geschichte der Holzschutzmaßnahmen von der Steinzeit bis in das 20. Jahrhundert (Historical wood preservation: As to the history of wood preservation procedures from Stone Age to the twentieth century). Ökobuch Verlag, Staufen bei Freiburg

  • Deppe H-J, Rühl H (1993) Evaluation of historical construction timber. 1. Density and compression strength. Holz Roh Werkst 51:379–383 (in German)

    Article  CAS  Google Scholar 

  • Ehlbeck J, Görlacher R (1988) Erste Ergebnisse von Festigkeitsuntersuchungen an altem Konstruktionsholz (First results from investigations of strength on wood from old constructions). In: Wenzel F (ed) Erhalten historisch bedeutsamer Bauwerke. SFB 315 Universität Karlsruhe, Jahrbuch 1987, Ernst & Sohn, Berlin, pp 235–247

  • Ehlbeck J, Görlacher R (1993) Probleme bei der Beurteilung der Tragfähigkeit von altem Konstruktionsholz (Problems with the evaluation of timber bearing capacity in old constructions). In: Schmidt H (ed) Erhalten historisch bedeutsamer Bauwerke. SFB 315 Universität Karlsruhe, Sonderband 1990: Erhaltungskonzepte, Ernst & Sohn, Berlin, pp 201–208

  • Erhardt D, Mecklenburg MF, Tumosa CS, Olstad TM (1996) New versus old wood: differences and similarities in physical, mechanical, and chemical properties. In: Bridgeland J (ed) International council of museums-committee for conservation 11th triennial meeting. James & James, London, pp 903–910

    Google Scholar 

  • Erhardt D, Tumosa C, Mecklenburg M (2000) Chemical and physical changes in naturally and accelerated aged cellulose. In: Cardamone JM, Baker MT (eds) Historic textiles, papers, and polymers in Museums. American Chemical Society, Washington, pp 23–37

    Chapter  Google Scholar 

  • Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. Bioresources 4:370–404

    CAS  Google Scholar 

  • Fengel D (1991) Aging and fossilization of wood and its components. Wood Sci Technol 25:153–177

    CAS  Google Scholar 

  • Florian M-LE (1990) Scope and history of archaeological wood. In: Rowell RM, Barbour RJ (eds) Archaeological wood: properties, chemistry, and preservation. Advances in Chemistry Series 225, American Chemical Society, Washington, DC, pp 3–32

    Google Scholar 

  • Follrich J, Teischinger A, Müller U (2011) Artificial ageing of softwood joints and its effect on internal bond strength with special consideration of flat-to-end grain joints. Eur J Wood Prod 69:597–604

    Article  CAS  Google Scholar 

  • Foschi RO, Yao FZ (1986) Another look at three duration of load models. In: Proceedings of the 19th meeting, international council for research and innovation in building and construction, working commission W18—timber structures, CIB-W18, Florence, Italy

  • Fridley KJ, Mitchell JB, Hunt MO, Senft JF (1996a) Effect of 85 years of service on mechanical properties of timber roof members. Part 1: experimental observations. For Prod J 46(5):72–78

    Google Scholar 

  • Fridley KJ, Mitchell JB, Hunt MO, Senft JF (1996b) Effect of 85 years of service on mechanical properties of timber roof members. Part 2: cumulative damage analysis. For Prod J 46(6):85–90

    Google Scholar 

  • Froidevaux J, Navi P (2013) Aging law of spruce wood. Wood Mat Sci Eng 8(1):46–52

    Article  CAS  Google Scholar 

  • Froidevaux J, Volkmer T, Ganne-Chédeville C, Gril J, Navi P (2012) Viscoelastic behavior of aged and non-aged spruce wood in the radial direction. Wood Mat Sci Eng 7(1):1–12

    Article  Google Scholar 

  • Ganne-Chédeville C, Jääskeläinen A-S, Froidevaux J, Hughes M, Navi P (2012) Natural and artificial ageing of spruce wood as observed by FTIR-ATR and UVRR spectroscopy. Holzforschung 66:163–170

    Article  CAS  Google Scholar 

  • García Esteban L, García Fernández F, Guindeo A, Palacios P, Gril J (2006) Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestris L. Ann For Sci 63:309–317

    Article  Google Scholar 

  • Gawron J, Szczesna M, Zielenkiewicz T, Golofit T (2012) Cellulose crystallinity index examination in oak wood originated from antique woodwork. Drewno 55(188):109–114

    Google Scholar 

  • Gonzalez-Pena MM, Curling SF, Hale MDC (2009) On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polym Degrad Stabil 94:2184–2193

    Article  CAS  Google Scholar 

  • Hakkou M, Petrissans M, Gerardin P, Zoulalian A (2006) Investigations of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stabil 91:393–397

    Article  CAS  Google Scholar 

  • Hedges JI (1990) The chemistry of archaeological wood. In: Rowell RM, Barbour RJ (eds) Archaeological wood: properties, chemistry, and preservation. Advances in Chemistry Series 225, American Chemical Society, Washington, pp 111–140

    Google Scholar 

  • Hoffmann P, Jones MA (1990) Structure and degradation process for waterlogged archaeological wood. In: Rowell RM, Barbour RJ (eds) Archaeological wood: properties, chemistry, and preservation. Advances in Chemistry Series, American Chemical Society 225, Washington, pp 35–65

    Google Scholar 

  • Holz D (1981) Zum Alterungsverhalten des Werkstoffes Holz – einige Ansichten, Untersuchungen, Ergebnisse (Aging of wood—some aspects, investigations, results). Holztechnologie 22:80–85

  • Holzer SM, Loferski JR, Dillard DA (1989) A review of creep in wood: concepts relevant to develop long-term behavior predictions for wood structures. Wood Fiber Sci 21:376–392

    Google Scholar 

  • Hon DNS, Chang ST, Feist WC (1985) Protection of wood surfaces against photooxidation. J Appl Polym Sci 30:1429–1448

    Article  CAS  Google Scholar 

  • Horie H (2002) Strength deterioration of recycled lumber collected from demolished wooden buildings in Hokkaido. Mokuzai Gakkaishi 48:280–287

    Google Scholar 

  • Horvath G, Kawazoe K (1983) Method for the calculation of effective pore-size distribution in molecular-sieve carbon. J Chem Eng Jpn 16:470–475

    Article  CAS  Google Scholar 

  • Inagaki T, Yonenobu H, Tsuchikawa S (2008) Near-infrared spectroscopic monitoring of the water adsorption/desorption process in modern and archaeological wood. Appl Spectrosc 62:860–865

    Article  PubMed  CAS  Google Scholar 

  • Kataoka Y (2008) Photodegradation of wood and depth profile analysis. Mokuzai Gakkaishi 54:165–173

    Article  CAS  Google Scholar 

  • Kataoka Y, Kiguchi M, Williams RS, Evans PD (2007) Violet light causes photodegradation of wood beyond the zone affected by ultraviolet radiation. Holzforschung 61:23–27

    Article  CAS  Google Scholar 

  • Kawai S, Yokoyama M, Matsuo M, Sugiyama J (2008) Research on the aging of wood in RISH. In: Gril J (ed) Wood science for preservation of cultural heritage: mechanical and biological factors. Braga, Portugal, pp 52–56

    Google Scholar 

  • Kohara J (1955) Studies on the permanence of wood (X): colorimetry on the old timbers by the trichromatic colorimeter. J Jpn For Soc 37(2):63–66

    Google Scholar 

  • Kohara J, Okamoto H (1955) Studies of Japanese old timbers. Sci Rep Saikyo Univ 7(1a):9–20

    Google Scholar 

  • Kojiro K, Furuta Y, Ohkoshi M, Ishimaru Y, Yokoyama M, Sugiyama J, Kawai S, Mitsutani T, Ozaki H, Sakamoto M, Imamura M (2008) Changes in micropores in dry wood with elapsed time in the environment. J Wood Sci 54:515–519

    Article  Google Scholar 

  • Kollmann F, Schmidt E (1962) Structural derangement and loss in strength of permanently stressed coniferous wood (in German). Holz Roh Werkst 20:333–338

    Article  Google Scholar 

  • Kránitz K (2015) Effect of natural aging on wood. Dissertation, ETH Zurich

  • Kránitz K, Deublein M, Niemz P (2014) Determination of dynamic elastic moduli and shear moduli of aged wood by means of ultrasonic devices. Mater Struct 47:925–936

    Article  CAS  Google Scholar 

  • Kuo ML, Hu NH (1991) Ultrastructural changes of photodegradation of wood surfaces exposed to UV. Holzforschung 45:347–353

    Article  CAS  Google Scholar 

  • Kurtoglu A (1983) The properties of sorption of old spruce timber. Holzforsch Holzverw 35(6):125–126

    CAS  Google Scholar 

  • Lang A (2004) Charakterisierung des Altholzaufkommens in Deutschland (Characterisation of the waste wood situation in Germany). Dissertation, Universität Hamburg

  • Li X, Cai Z, Mou Q, Wu Y, Liu Y (2011) Effects of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) wood. Adv Mat Res 197–198:90–95

    Google Scholar 

  • Lißner K, Rug W (2005) Ergänzung bzw. Präzisierung der für die Nachweisführung zur Stand- und Tragsicherheit sowie Gebrauchstauglichkeit von Holzkonstruktionen in der Altbausubstanz maßgebenden Abschnitte der DIN 1052. Bauforschung, T 3068, Fraunhofer IRB Verlag, Stuttgart

  • Lohwag K (1967) Zeittafel zur Geschichte des Holzschutzes (Chronological table of the history of wood preservation). Int Holzmarkt 58(16/17):45–54

  • Matsuo M, Yokoyama M, Umemura K, Sugiyama J, Kawai S, Gril J, Kubodera S, Mitsutani T, Ozaki H, Sakamoto M, Imamura M (2011) Aging of wood: analysis of color changes during natural aging and heat treatment. Holzforschung 65:361–368

    Article  CAS  Google Scholar 

  • Miklecic J, Jirous-Rajkovic V, Antonovic A, Spanic N (2011) Discoloration of thermally modified wood during simulated indoor sunlight exposure. Bioresources 6:434–446

    CAS  Google Scholar 

  • Miklecic J, Kasa A, Jirous-Rajkovic V (2012) Colour changes of modified oak wood in indoor environment. Eur J Wood Prod 70:385–387

    Article  CAS  Google Scholar 

  • Nakao T, Tanaka C, Takahashi A, Okano T, Nishimura H (1989) Long-term changes in degree of crystallinity of wood cellulose. Holzforschung 43:419–420

    Article  CAS  Google Scholar 

  • Narayanamurti D, Ghosh SS, Prasad BN, George J (1958) Note on examination of an old timber specimen. Holz Roh Werkst 16:245–247

    Article  CAS  Google Scholar 

  • Narayanamurti D, Prasad BN, Verma GM (1961) Examination of old timbers—part III: old Pterocarpus specimen from Tirupathi. Holz Roh Werkst 19(2):47–50

    Article  CAS  Google Scholar 

  • Nemeth K (1998) A faanyag degradációja (Degradation of wood). Mezőgazdasági Szaktudás Kiadó, Budapest

    Google Scholar 

  • Niemz P (1993) Physik des Holzes und der Holzwerkstoffe (Physics of solid wood and wooden materials). DRW, Leinfelden-Echterdingen

  • Niemz P, Hofmann T, Rétfalvi T (2010) Investigation of chemical changes in the structure of thermally modified wood. MADERAS: Ciencia y Tecnología 12(2):69–78

  • Nier J (1994) Experimentelle Festigkeitsuntersuchungen an alten Bauhölzern und daraus abgeleitete Erkenntnisse zur Tragfähigkeitsbeurteilung (Experimental investigations of strength on old construction timber and therefrom deduced knowledge for bearing capacity estimation). Dissertation, Technische Hochschule Leipzig

  • Nilsson T, Daniel G (1990) Structure and the aging process of dry archaeological wood. In: Rowell RM, Barbour RJ (eds) Archaeological wood: properties, chemistry, and preservation. Advances in Chemistry Series 225, American Chemical Society, Washington, pp 67–86

    Google Scholar 

  • Noguchi T, Obataya E, Ando K (2012) Effects of aging on the vibrational properties of wood. J Cult Herit 13(3S):21–25

    Article  Google Scholar 

  • Norrstrom H (1969) Light absorbing properties of pulp and pulp components, 1. Method. Sven Papperstidn 72(2):25

    Google Scholar 

  • Oltean L, Teischinger A, Hansmann C (2008) Wood surface discolouration due to simulated indoor sunlight exposure. Holz Roh Werkst 66:51–56

    Article  Google Scholar 

  • Oltean L, Teischinger A, Hansmann C (2011) Influence of low and moderate temperature kiln drying schedules on specific mechanical properties of Norway spruce wood. Eur J Wood Prod 69:451–457

    Article  Google Scholar 

  • Papp G, Barta E, Preklet E, Tolvaj L, Berkesi O, Nagy T, Szatmári S (2005) Changes in DRIFT spectra of wood irradiated by UV laser as a function of energy. J Photochem Photobiol A 173:137–142

    Article  CAS  Google Scholar 

  • Pedersen NB, Björdal CG, Jensen P, Felby C (2013) Bacterial degradation of archaeological wood in anoxic waterlogged environments. In: Harding SE (ed) Stability of complex carbohydrate structures: biofuels, foods, vaccines and shipwrecks. The Royal Society of Chemistry, Cambridge, pp 160–187

    Google Scholar 

  • Pfriem A, Zauer M, Wagenführ A (2009) Alteration of the pore structure of spruce (Picea abies (L.) Karst.) and maple (Acer pseudoplatanus L.) due to thermal treatment as determined by helium pycnometry and mercury intrusion porosimetry. Holzforschung 63:94–98

    Article  CAS  Google Scholar 

  • Pfriem A, Buchelt B, Zauer M, Wagenführ A (2010) Comparative analysis of thermally modified and native spruce loaded perpendicular to the grain. Eur J Wood Prod 68:267–270

    Article  CAS  Google Scholar 

  • Poncsák S, Kocaefe D, Bouazara M, Pichette A (2006) Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci Technol 40:647–663

    Article  CAS  Google Scholar 

  • Popescu C-M, Dobele G, Rossinskaja G, Dizhbite T, Vasile C (2007) Degradation of lime wood painting supports: evaluation of changes in the structure of aged lime wood by different physico-chemical methods. J Anal Appl Pyrol 79:71–77

    Article  CAS  Google Scholar 

  • Popper R, Niemz P, Eberle G (2005) Investigations on the sorption and swelling properties of thermally treated wood. Holz Roh Werkst 63:135–148

    Article  CAS  Google Scholar 

  • Reichel S (2015) Modellierung und Simulation hygro-mechanisch beanspruchter Strukturen aus Holz im Kurz- und Langzeitbereich (Modelling and simulation of the short-term and long-term material behaviour of hygro-mechanically loaded wooden structures). Dissertation, TU Dresden

  • Ross JC (ed) (2010) Wood handbook: wood as an engineering material. Forest Products Laboratory, Madison

    Google Scholar 

  • Rowell RM, Barbour RJ (1990) Archaeological wood: Properties, chemistry, and preservation. Advances in Chemistry Series 225, American Chemical Society, Washington

    Google Scholar 

  • Rowell RM, Ibach RE, McSweeny J, Nilsson T (2009) Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. Wood Mat Sci Eng 4(1–2):14–22

    Article  CAS  Google Scholar 

  • Rug W, Seemann A (1989) Ermittlung von Festigkeitswerten an alten Holzkonstruktionen (Determination of strength values on old wood constructions). Holztechnologie 30:69–73

  • Saito Y, Shida S, Ohta M, Yamamoto H, Tai T, Ohmura W, Makihara H, Noshiro S, Goto O (2008) Deterioration character of aged timbers: insect damage and material aging of rafters in a historic building of Fukushoji-temple. Mokuzai Gakkaishi 54:255–262

    Article  CAS  Google Scholar 

  • Sandberg D, Haller P, Navi P (2013) Thermo-hydro and thermo-hydro-mechanical wood processing: an opportunity for future environmentally friendly wood products. Wood Mat Sci Eng 8:64–88

    Article  CAS  Google Scholar 

  • Schulz H, von Aufsess H, Verron T (1984) Eigenschaften eines Fichtenbalkens aus altem Dachstuhl (Properties of a spruce beam after 300 years in roof construction). Holz Roh Werkst 42:109

  • Smith I, Landis E, Gong M (2003) Fracture and fatigue in wood. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  • Sonderegger W, Alter P, Niemz P (2008) Investigations on selected properties of tonal wood of spruce from Grisons. Holz Roh Werkst 66:345–354

    Article  CAS  Google Scholar 

  • Sonderegger W, Mannes D, Kaestner A, Hovind J, Lehmann E (2014) On-line monitoring of hygroscopicity and dimensional changes of wood during thermal modification by means of neutron imaging methods. Holzforschung. doi:10.1515/hf-2014-0008

    Google Scholar 

  • Sonderegger W, Kránitz K, Bues C-T, Niemz P (2015) Aging effects on physical and mechanical properties of spruce, fir and oak wood. J Cult Herit. doi:10.1016/j.culher.2015.02.002

    Google Scholar 

  • Stamm AJ (1956) Thermal degradation of wood and cellulose. Ind Eng Chem 48:413–417

    Article  CAS  Google Scholar 

  • Stanzl-Tschegg SE, Tschegg EK, Teischinger A (1994) Fracture energy of spruce wood after different drying procedures. Wood Fiber Sci 26:467–478

    CAS  Google Scholar 

  • Teischinger A (1991) Der Einfluss des Trocknungsverfahrens auf ausgewählte Holzkennwerte, Teil 1 (Influence of drying process on selected wood properties, part 1). Holzforsch Holzverw 43(1):20–22

  • Teischinger A (1992a) Der Einfluss des Trocknungsverfahrens auf ausgewählte Holzkennwerte, Teil 2 (Influence of drying process on selected wood properties, part 2). Holzforsch Holzverw 44(5):83–86

  • Teischinger A (1992b) Effect of different drying temperatures on selected physical wood properties. In: Vanek M (ed) 3rd IUFRO international wood drying conference, Vienna, pp 211–216

  • Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56:149–153

    Article  CAS  Google Scholar 

  • Tjeersdma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst 63:102–111

    Article  CAS  Google Scholar 

  • Tolvaj L, Faix O (1995) Artificial aging of wood monitored by DRIFT spectroscopy and CIE L*a*b* color measurements. 1. Effect of UV light. Holzforschung 49:397–404

    Article  CAS  Google Scholar 

  • Tolvaj L, Molnár S (2008) Photodegradation and thermal degradation of outdoor wood. In: Gril J (ed) Wood science for preservation of cultural heritage: mechanical and biological factors. Braga, Portugal, pp 67–72

    Google Scholar 

  • Tomassetti M, Campanella L, Tomellini R (1990) Thermogravimetric analysis of ancient and fresh woods. Thermochim Acta 170:51–65

    Article  CAS  Google Scholar 

  • Tsuchikawa S, Yonenobu H, Siesler HW (2005) Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method. Analyst 130:379–384

    Article  PubMed  CAS  Google Scholar 

  • Unger A, Schniewind AP, Unger W (2001) Conservation of wood artifacts. Springer, Berlin

    Book  Google Scholar 

  • Van Zyl JD, Van Wyk WJ, Heunis CM (1973) The effect of aging on the mechanical and chemical properties of wood. IUFRO-5 meeting: wood in the service of man. Pretoria 2:1069–1080

    Google Scholar 

  • Wagenführ R (2007) Holzatlas (Wood atlas), 6th edn. Fachbuchverlag, Leipzig

  • Weiland JJ, Guyonnet R (2003) Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh Werkst 61:216–220

    CAS  Google Scholar 

  • Weimar H (2000) Aspekte der stofflichen Charakterisierung von Altholz (Aspects of the material characterisation of aged wood). Diploma thesis, Universität Hamburg

  • Wikberg H, Maunu SL (2004) Characterisation of thermally modified hard- and softwoods by C-13 CPMAS NMR. Carbohyd Polym 58:461–466

    Article  CAS  Google Scholar 

  • Winandy JE (1996) Effects of treatment, incising, and drying on mechanical properties of timber. In: Ritter MA, Duwadi SR, Lee PDH (eds) National conference on wood transportation structures—new wood treatments. USDA Forest Service, Forest Products Laboratory, Madison, pp 371–378

    Google Scholar 

  • Witomski P, Krajewski A, Kozakiewicz P (2014) Selected mechanical properties of Scots pine wood from antique churches of Central Poland. Eur J Wood Prod 72:293–296

    Article  CAS  Google Scholar 

  • Wood, LW (1951) Relation of strength of wood to duration of loads. Report no 1916, USDA Forest Service, Forest Products Laboratory, Madison WI

  • Yildiz S (2002) Physical, mechanical, technological and chemical properties of beech and spruce wood treated by heating. Karadeniz Technical University, Trabzon

    Google Scholar 

  • Yildiz S, Gezer ED, Yildiz UC (2006) Mechanical and chemical behavior of spruce wood modified by heat. Build Environ 41:1762–1766

    Article  Google Scholar 

  • Yokoyama M, Gril J, Matsuo M, Yano H, Sugiyama J, Clair B, Kubodera S, Mitsutani T, Sakamoto M, Ozaki H, Imamura M, Kawai S (2009) Mechanical characteristics of aged Hinoki wood from Japanese historical buildings. CR Phys 10:601–611

    Article  CAS  Google Scholar 

  • Yonenobu H, Tsuchikawa S (2003) Near-infrared spectroscopic comparison of antique and modern wood. Appl Spectrosc 57:1451–1453

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto T (1972) Photochemical analysis of wood and related substances. J Jpn Wood Res Soc 18:45–49

    Google Scholar 

Download references

Acknowledgments

Thanks go to the ETH Zurich for its financial support (ETHIRA Grant) for the years 2009–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Sonderegger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kránitz, K., Sonderegger, W., Bues, CT. et al. Effects of aging on wood: a literature review. Wood Sci Technol 50, 7–22 (2016). https://doi.org/10.1007/s00226-015-0766-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-015-0766-0

Keywords

Navigation