Chemical and physical properties of short rotation tree species


The European Union’s growth strategy (Europe 2020) requires reductions in greenhouse gas (GHG) emissions and increases in both renewable energy sources and energy efficiency. Short rotation forestry (SRF) has achieved greater awareness due to these targets. Short rotations (1–12 years), rapid growth and the ability to coppice are typical for SRF. Salix, Populus, Alnus and Betula have smaller GHG emissions of biomass production than annual agricultural plant species, since management and harvesting are not needed every year. Physicochemical properties of these species must be known when their utilisation is planned and optimised. Seven tree species were studied: three willows (Salix myrsinifolia, Salix schwerinii and Klara), one aspen (Populus tremula), one alder (Alnus glutinosa) and two birches (Betula pendula and Betula pubescens). One stem wood (S) sample and one stem wood and bark (SB) sample of each tree were investigated. Furthermore, seven surface soil samples and four incineration ash samples (two S. myrsinifolia and two S. schwerinii) were also studied. Heating values, densities, ash contents as well as carbon, hydrogen and nitrogen contents of all short rotation biomass samples were usually quite typical for the corresponding tree species. Additional observations included the accumulation of cadmium in willow and aspen samples, small chloride content values, and higher ash- and element contents in SB samples than in the corresponding S samples. Nutrient content of ash was usually higher in the S sample, contradictory to biomass samples, and finally the cadmium content of the ash samples was very high.

This is a preview of subscription content, log in to check access.


  1. Äijälä M (1982) Utilization and processing of forest energy. Part 6. Properties and grinding of fast growing wood (Metsäenergian käyttö ja jalostus. Osa 6. Nopeakasvuisten puiden ominaisuudet ja jauhatus). VTT Tutkimuksia 108 (In Finnish)

  2. Alakangas E (2000) Properties of fuels used in Finland (Suomessa käytettävien polttoaineiden ominaisuuksia). VTT tiedotteita 2045 (In Finnish)

  3. ASTM D240 (2007) Standard test method for heat combustion of liquid hydrocarbon fuels by bomb calorimeter. ASTM International

  4. ASTM D2395-07ae1 (2007) Standard test methods for specific gravity of wood and wood-based materials. ASTM International

  5. CEN/TS 14775 (2004) Solid biofuels. Method for the determination of ash content. European Committee for Standardization

  6. Chow P, Rolfe GL (1989) Carbon and hydrogen contents of short-rotation biomass of five hardwood species. Wood Fiber Sci 21:30–36

    CAS  Google Scholar 

  7. DIN 51,900-1 (2000) Determining the gross calorific value of solid and liquid fuels using bomb calorimeter, and calculation of net calorific value—Part I: General information. Deutsches Institut für Normung

  8. EPA Method 3051A (2007) Microwave assisted acid digestion of sediments, sludges, soils, and oils. United States Environmental protection agency

  9. European Commission (2008) Directive 2008/98/EC of the European parliament and of the council of 19 November 2008 on waste and repealing certain directives, Official Journal of the European Union, L 312/3

  10. European Commission (2009) Directive 2009/28/EC of the European Parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, Official Journal of the European Union, L 140/16

  11. European Commission (2013) Europe 2020. Accessed Feb 25 2014

  12. Fengel D, Wegener G (1989) Wood. Chemistry, ultrastructure, reactions. Walter de Gruyter & Co, Berlin

    Google Scholar 

  13. Hach Lange (2014) Working procedure: LCK311 Chloride. Accessed 09 Sep 2014

  14. Hakkila P (1979) Wood density survey and dry weight tables for pine, spruce and birch stems in Finland. Commun Inst For Fenn 96:3

    Google Scholar 

  15. Hakkila P, Kalaja H (1983) The technique of recycling wood and bark ash (Puu- ja kuorituhkan palauttamisen tekniikka). Folia For 552:1–37 (In Finnish)

    Google Scholar 

  16. Hammer D, Kayser A, Keller C (2003) Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use Manag 19:187–192

    Article  Google Scholar 

  17. Harmon ME, Fasth B, Woodall CW, Sexton J (2013) Carbon concentration of standing and downed woody detritus: effects of tree taxa, decay class, position, and tissue type. Forest Ecol Manag 291:259–267

    Article  Google Scholar 

  18. Hytönen J, Ferm A (1984) On the technical properties of Salix ‘Aquatica’ sprouts (Vesipajun vesojen puuteknisiä ominaisuuksia). Metsäntutkimuslaitoksen tiedonantoja 163 (In Finnish)

  19. ISO 1928 (1995) Solid mineral fuels—determination of gross calorific value by the bomb calorimetric method, and calculation of net calorific value. International Organization for Standardization

  20. Kärkkäinen M (2002) Structure and properties of wood (Puun rakenne ja ominaisuudet). Metsäkustannus Oy, Hämeenlinna (In Finnish)

    Google Scholar 

  21. Kopponen P, Utriainen M, Lukkari K, Suntioinen S, Karenlampi L, Karenlampi S (2001) Clonal differences in copper and zinc tolerance of birch in metal-supplemented soils. Environ Pollut 112:89–97

    PubMed  Article  CAS  Google Scholar 

  22. Kytö M, Äijälä M, Panula E (1983) Utilization and processing of forest energy. Part 8. Properties and energy use of wood. A literature review (Metsäenergian käyttö ja jalostus. Osa 8. Puun ominaisuudet ja energiakäyttö. Kirjallisuustutkimus). VTT Tutkimuksia 237 (In Finnish)

  23. Ledin S (1996) Willow wood properties, production and economy. Biomass Bioenerg 11:75–83

    Article  CAS  Google Scholar 

  24. Lehtonen I, Pekkala O, Uusvaara O (1978) Technical properties of black alder [Alnus glutinosa (L.) Gaertn.] and great sallow (Salix caprea L.) wood and pulp (Tervalepän (Alnus glutinosa (l) gaertn.) ja raidan (Salix Caprea l.) puu- ja massateknisiä ominaisuuksia). Folia For 344:1–19 (In Finnish)

    Google Scholar 

  25. Li C-Y, Strzelczyk E, Pokojska A (1996) Nitrogen-fixing endophyte Frankia in polish Alnus glutinosa (L.) Gartn. Microbiol Res 151:371–374

    Article  CAS  Google Scholar 

  26. Meers E, Vandecasteele B, Rutterns A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68

    Article  CAS  Google Scholar 

  27. Ministry of Agriculture and Forestry (2011) Ministry of Agriculture and Forestry Decree on fertilizer products 24/11 (In Finnish)

  28. Mitchell CP, Stevens EA, Watters MP (1999) Short-rotation forestry—operations, productivity and costs based on experience gained in the UK. Forest Ecol Manag 121:123–136

    Article  Google Scholar 

  29. Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K, Strażyńska K, Stachowiak A (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenerg 34:1410–1418

    Article  CAS  Google Scholar 

  30. Nurmi J (1992) Measurement and evaluation of wood fuel. Biomass Bioenerg 2:157–171

    Article  CAS  Google Scholar 

  31. Nurmi J (1993) Heating values of the above ground biomass of small-sized trees. Acta For Fenn 236:1–30

    Google Scholar 

  32. Nurmi J (1997) Heating values of mature trees. Acta For Fenn 256:1–28

    Google Scholar 

  33. Przyborowski JA, Jedruczka M, Ciszewska-Marciniak J, Sulima P, Wojciechowicz KM, Zenkteler E (2012) Evaluation of the yield potential and physicochemical properties of the biomass of Salix viminalis x Populus tremula hybrids. Ind Crop Prod 36:549–554

    Article  Google Scholar 

  34. Salmenoja K (2000) Field and laboratory studies on chlorine-induced superheater corrosion in boilers fired with bio-fuels. Dissertation, Åbo Akademi University

  35. Senelwa K, Sims R (1999) Fuel characteristics of short rotation forest biomass. Biomass Bioenerg 17:127–140

    Article  Google Scholar 

  36. Stolarski MJ, Szczukowski S, Tworkowski J, Klasa A (2013) Yield, energy parameters and chemical composition of short-rotation willow biomass. Ind Crop Prod 46:60–65

    Article  CAS  Google Scholar 

  37. Tarvainen T, Kuusisto E (1999) Baltic Soil Survey: Finnish Results. Geological Survey of Finland Special Paper 27

  38. Vande Walle I, Van Camp N, Van de Casteele L, Verheyen K, Lemeur R (2007) Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) I-Biomass production after 4 years of tree growth. Biomass Bioenerg 31:267–275

    Article  Google Scholar 

  39. Weih M (2004) Intensive short rotation forestry in boreal climates: present and future perspectives. Can J Forest Res 34:1369–1378

    Article  Google Scholar 

  40. Werkelin J, Skrifvars B-J, Hupa M (2005) Ash-forming elements in four Scandinavian wood species. Part 1: summer harvest. Biomass Bioenerg 29:451–466

    Article  CAS  Google Scholar 

  41. Wilén C, Moilanen A, Kurkela E (1996) Biomass feedstock analyses. VTT Publications 282

Download references


The authors wish to thank Prof. Paavo Pelkonen, M.Sc. Mir Salam and the staff of the Trace Element Laboratory at the University of Oulu and Suomen Ympäristöpalvelu Ltd, especially M.Sc. Ilkka Välimäki, for their assistance in chemical analysis.

Author information



Corresponding author

Correspondence to Janne Pesonen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pesonen, J., Kuokkanen, T., Kaipiainen, E. et al. Chemical and physical properties of short rotation tree species. Eur. J. Wood Prod. 72, 769–777 (2014).

Download citation


  • Willow
  • Basic Density
  • Biomass Sample
  • Short Rotation
  • Cadmium Content