Skip to main content
Log in

Color variation of stained wood products in association to near infrared spectroscopy scans

Bestimmung von Farbschwankungen bei gefärbten Holzprodukten mittels Infrarotspektroskopiemessung

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The research aimed to test the hypothesis that near infrared reflectance (NIR) scans could detect surface characteristics associated with uneven coloring before staining red alder (Alnus rubra Bong), cherry (Prunus sp.), pine (Pinus sp.) and maple (Acer sp.) boards. NIR spectra were successfully correlated with average scanned area data of grain angle, density, pre- and post-staining 8-bit color values, and the difference in color induced by staining when combinations of either three, two or one of the tested wood species were used as input parameters. Difficulties were encountered when both cherry and maple were clustered together with the other two species in a generalized model, however, when both were excluded, the model produced very high R2 values (over 0.98).

Zusammenfassung

Ziel dieser Studie war es, die Hypothese zu überprüfen, dass mittels NIR-Messungen bereits vor der Verfärbung Oberflächenmerkmale von Brettern aus Roterlen- (Alnus rubra Bong), Kirsch- (Prunus sp.), Kiefern- (Pinus sp.) und Ahornholz (Acer sp.) bestimmt werden können, die zu ungleichmäßiger Färbung führen. NIR-Spektren wurden mit über Teilflächen gemittelten Werten von Faserwinkel, Dichte, 8-Bit Farbwerten vor und nach der Färbung sowie dem durch die Färbung erzeugten Farbunterschied bei Verwendung von entweder drei, zwei oder einer der untersuchten Holzarten als Eingabeparameter erfolgreich korreliert. Schwierigkeiten traten auf, wenn sowohl Kirsche als auch Ahorn mit den beiden anderen Holzarten in einem umfassenden Modell zusammengefasst wurden. Wenn jedoch beide ausgeschlossen wurden, ergab das Modell sehr hohe R2-Werte (über 0,98).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4

Similar content being viewed by others

References

  • Creative Homeowner Editors (2004) Cabinets, Shelves & Home Storage Solutions: Practical Ideas & Projects for Organizing Your Home

  • Dorge V, Howlett FC (1998) Painted Wood: History and Conservation. In: Proceeding, The Getty Conservation Institute, Los Angeles

  • Eastment HT, Krzanowski WJ (1982) Cross-validatory choice of the number of components from a principal component analysis. Technometrics 24:73–77

    Article  Google Scholar 

  • Flexner B (1999) Understanding wood finishing: how to select and apply the right finish, Chap 5: Staining Wood. Reader’s Digest Association, Inc, Pleasantville, pp 72–188

  • Gindl W, Teischinger A (2002) The potential of VIS- and NIR-spectroscopy for the non-destructive evaluation of grain-angle in wood. Wood Fiber Sci 34:651–656

    CAS  Google Scholar 

  • Haartveit EY, Flæte PO (2008) Near Infrared Spectroscopy (NIRS) as a Tool for Effective Classification of Wood. In: Proceedings of the 51st International Convention of Society of Wood Science and Technology, November 10–12, Concepción, Chile, paper WS-25 1 of 9

  • Jewitt J (1999) Great wood finishes: A step-by-step guide to beautiful results. The Taunton Press, Newtown, p 294

    Google Scholar 

  • Pastore TCM, Braga JWB, Coradin VTR et al (2011) Near infrared spectroscopy (NIRS) as a potential tool for monitoring trade of similar woods: discrimination of true mahogany, cedar, andiroba, and curupix′a. Holzforschung 65(1):73–80

    Article  CAS  Google Scholar 

  • Sandberg K, Sterley M (2009) Separating Norway spruce heartwood and sapwood in dried condition with near-infrared spectroscopy and multivariate data analysis. Eur J Forest Res 128:475–481

    Article  Google Scholar 

  • Schimleck LR, Evans R (2003) Estimation of air-dry density of increment cores by near infrared spectroscopy. Appita J 56:312–317

    Google Scholar 

  • Schweingruber FH (2007) Wood structure and environment. Chap 2: Preparation of wood and herb samples. Springer Series in Wood Science, Berlin

  • Stamm AJ, Hansen LA (1937) The bonding force of cellulose materials for water from specific volume and thermal data. J Phys Chem 41:1007–1016

    Article  CAS  Google Scholar 

  • Tsuchikawa S (2007) A review of recent near infrared research for wood and paper. Appl Spectrosc Rev 42(1):43–71

    Article  CAS  Google Scholar 

  • Tsuchikawa S, Inoue K, Noma J, Hayashi K (2003) Application of near-infrared spectroscopy to wood discrimination. J Wood Sci 49(1):29–35

    Article  Google Scholar 

  • Via BK, So CL, Shupe TF, Stine M, Groom LH (2005) Ability of near infrared spectroscopy to monitor air-dry density distribution and variation of wood. Wood Fiber Sci 37:394–402

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a research grand provided by the Natural Resources Canada (NRCan), Value-to-Wood program. We also thank Profs Shawn Mansfield and Phil Evans for the NIR spectrometer donation and assistance with the finishing wood properties, respectively. MiCROTEC’s GOLDENEYE specimen scanning and data analysis is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros Avramidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazarescu, C., Panagiotidis, K. & Avramidis, S. Color variation of stained wood products in association to near infrared spectroscopy scans. Eur. J. Wood Prod. 72, 81–85 (2014). https://doi.org/10.1007/s00107-013-0758-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-013-0758-4

Keywords

Navigation