Skip to main content
Log in

Separating Norway spruce heartwood and sapwood in dried condition with near-infrared spectroscopy and multivariate data analysis

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Norway spruce [Picea abies (L.) Karst.] heartwood and sapwood have differing wood properties, but are similar in appearance. An investigation was made to see whether near-infrared spectroscopy (NIRS) could be used with multivariate statistics for separation between heartwood and sapwood in dry state on tangential longitudinal surfaces. For classification of wood into sapwood and heartwood, partial least square (PLS) regression was used. Orthogonal signal correction (OSC) filtering was used on the spectra. This study shows that a separation of sapwood and heartwood of spruce is possible with NIR spectra measured in a laboratory environment. The visible-wavelength spectra have significant influence on the predictive power of separation models between sapwood and heartwood of spruce. All 44 specimens in the calibration set were correctly classified into heartwood and sapwood. Validation of the model was done with a prediction set of 16 specimens, of which one was classified incorrectly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • André N, Labbe N, Rials TG, Kelley SS (2006) Assessment of wood load condition by Near Infrared (NIR) spectroscopy. J Mater Sci 41(7):1879–1886. doi:10.1007/s10853-006-4433-6

    Article  Google Scholar 

  • Anon (2000) Improved spruce timber utilization (STUD). Final report, European shared-cost research project with in FAIR (DGXII/E2), contact no. FAIR CT 96-1915

  • Assarsson A, Åkerlund G (1966) Studies on wood resin, especially the change in chemical composition during seasoning of wood. Part 4. The composition of the petroleum ether soluble nonvolatile extractives from fresh spruce, pine, birch and aspen wood. Sven Papperstidn 69(16):517–525

    CAS  Google Scholar 

  • Bergström M, Rydell Å, Thörnqvist T (2005) Durability and moisture dynamics of Norway Spruce (Picea abies) heartwood and sapwood. Proceedings of the Woodframe Housing Durability and Disaster Issues Conference, organized by the Forest Products Society, Las Vegas, Nevada, USA, 4–6 October 2004

  • Bertaud F, Holmbom B (2004) Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Technol 38(4):245–256. doi:10.1007/s00226-004-0241-9

    Article  CAS  Google Scholar 

  • Blom Å, Bergström M (2005) Mycologg: a new accelerated test method for wood durability above ground. Wood Sci Technol 39(8):663–673. doi:10.1007/s00226-005-0003-3

    Article  CAS  Google Scholar 

  • Bucur V (2003) Non-destructive characterization and imaging of Wood. In: Timell TE (ed) Springer Series in Wood Science, New York

  • Bügsen M, Münch E (1929) The structure and life of forest trees, 3rd revised edition. In: Münch E (ed) Chapman Hall, London, p 436

  • Curran PJ (1989) Remote sensing of foliar chemistry. Remote Sens Environ 30:271–278. doi:10.1016/0034-4257(89)90069-2

    Article  Google Scholar 

  • Ekman R (1980) Wood extractives of Norway Spruce. A study of Nonvolatile Constituents and Their Effects on Fomes annosus. Publication of the Institute of Wood Chemistry and Pulp and Paper Technology. A 330 Åbo Akademi

  • Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (2001) Multi- and Megavariate Data Analysis Principles and Applications. Sweden: Umetrics AB. ISBN91-973730-1-x

  • Fackler K, Schwanninger M, Gradinger C, Srebotnik E, Hinterstoisser B, Messner K (2007) Fungal decay of spruce and beech wood assessed by near-infrared spectroscopy in combination with uni- and multivariate data analysis. Holzforschung 61(6):680–687. doi:10.1515/HF.2007.098

    Article  CAS  Google Scholar 

  • Fengel D, Wegner G (1989) Wood chemistry, ultrastructure, reactions. Walter de Gruyter, New York, p 613

    Google Scholar 

  • Flæte PO, Haartveit EY (2003) Differentation of Scots pine heartwood and sapwood by near infrared spectroscopy. IRG/WP 03-10459. Paper prepared for the 34th annual meeting, 18–23 May 2003, Brisbane, Australia

  • Flaete PO, Haartveit EY, Vadla K (2006) Near infrared spectroscopy with multivariate statistical modelling as a tool for differentiation of wood from tree species with similar appearance. N Z J For Sci 36(2–3):382–392

    Google Scholar 

  • Frühwald E, Li Y, Wadsö L (2007) Mould growth on high-temperature dried and heat-treated Norway Spruce. Nordic Workshop on Wood Engineering, Skellefteå February 21 2007, Woodtech Sweden, http://www.woodtech-swededen.org; http://epubl.ltu.se/1402-1528/2007/06/LTU-FR-0706-SE.pdf

  • Gjerdrum P, Høibø O (2004) Heartwood detection in Scots pine by means of heat-sensitive infrared images. Holz Roh Werkst 62:131–136. doi:10.1007/s00107-004-0467-0

    Article  Google Scholar 

  • Grundberg S (1999) An X-ray LogScanner-a tool for control of the sawmill process, Doctorial thesis, Luleå University of technology, Skellefteå Campus Division of Wood Technology, 1999:37. ISSN:1402-1544

  • Grundberg S, Grönlund A, Grönlund U (1994) The Swedish stem bank—an unique database for different silvcultural and wood properties. In: IUFRO S5.01–04 Workshop Proceedings. Hook, Sweden, pp 71–77

    Google Scholar 

  • Hauksson JB, Bergqvist G, Bergsten U, Sjöström M, Edlund U (2001) Prediction of basic wood properties for Norway spruce. Interpretation of Near Infrared Spectroscopy data using partial least squares regression. Wood Sci Technol 35:475–485. doi:10.1007/s00226-001-0123-3

    Article  CAS  Google Scholar 

  • Hillis W (1987) Heartwood and tree exudates. In: Timell TE (ed) Springer series in wood science. Springer, New York, p 268

    Google Scholar 

  • Lindgren B, Norin T (1969) Hartsets kemi. In: Hartskompendium. Svenska Pappers och Cellulosaingenjörsföreningen (in Swedish)

  • Longuetaud F, Mothe F, Leban J-M, Mäkelä A (2006) Picea abies sapwood width: variations within and between trees. Scand J For Res 21:41–53. doi:10.1080/02827580500518632

    Article  Google Scholar 

  • Longuetaud F, Mothe F, Leban J-M (2007) Automatic detection of the heartwood/sapwood boundary within Norway spruce [Picea abies (L.) Karst.] logs by means of CT images. Comput Electron Agric 58:100–111. doi:10.1016/j.compag.2007.03.010

    Article  Google Scholar 

  • Lycken A, Oja J, Lundahl CG (2009) Kundanpassad optimering i såglinjen-Virkeskvalitet on-line. SP Rapport 2009:05 (in Swedish)

  • Martens F, Naes T (1996) Multivariate calibration. Wiley, Chichester

    Google Scholar 

  • Münster-Swendsen M (1987) Index of vigour in Norway spruce (Picea Abies Karst.). J Appl Ecol 24:551–561. doi:10.2307/2403892

    Article  Google Scholar 

  • Oja J, Grundberg S, Grönlund A (2001) Predicting the stiffness of sawn products by X-ray scanning of Norway spruce saw logs. Scand J For Res 16:88–96. doi:10.1080/028275801300004442

    Article  Google Scholar 

  • Oja J, Grundberg S, Berg P, Fjellström P-A (2006) Mätutrustning för bestämning av fibervinkel och kärnvedsinnehåll vid tvärtransport av träprodukter i råsorteringen. SP Rapport 2006:16. ISBN nr 91-85533-01-7 (in Swedish)

  • Pensar G (1967) Fördelning och sammansättning av extraktivämnen i ved eterextrakt av vår- och sommarvedsvävnad i gran. Acta Academiae Aboensis. Ser B, 27(5). Medd. no. 211 (in Swedish)

  • Sandberg K (2002) Influences of growth site on different wood properties in Spruce sap-/heartwood using CT-scanner measurements, In: Proceedings of the fourth workshop connection between forest resources and wood quality: modelling approaches and simulation software, organized by IUFRO Workingparty S5.01-04 Harrison Hot Springs Resort Harrison Hot Springs, BC Canada, 8–15 September 2002

  • Sandberg K (2006) Modelling water sorption gradients in spruce using CT scanned data. N Z J For Sci 36(2–3):347–364

    Google Scholar 

  • Sandberg K (2008) Degradation of Norway spruce (Picea abies) heartwood and sapwood during 5.5 years’ above-ground exposure. Wood Mater Sci Eng 3(3–4):83–93

    Article  Google Scholar 

  • Schimleck LR, Mora C, Daniels RF (2003) Estimation of physical wood properties of green taeda radial samples by near infrared spectroscopy. Can J For Res 33(12):2297–2305. doi:10.1139/x03-173

    Article  Google Scholar 

  • Schwanninger M, Hinterstoisser C, Gradinger K, Messner K, Fackler K (2004) Examination of spruce wood biodegraded by Ceriporiopsis subvermispora using near and mid infrared spectroscopy. J Near Infrared Spec 12(6):397–410

    Article  CAS  Google Scholar 

  • Shenk JS, Workman JJ, Westhaus MO (2008) Handbook of Near-Infrared Analysis. In: Burns DA, Ciurczak EW (eds) 3rd edn. Taylor & Francis Group, New York, pp 356–357

  • Stirling R, Trung T, Breuil C, Bicho P (2007) Predicting wood decay and density using NIR spectroscopy. Wood Fiber Sci 39(3):414–423

    CAS  Google Scholar 

  • Sundberg R (1999) Multivariate calibration- Direct and Indirect Regression methodology, Board of foundation of the Scandinavian Journal of Statistics, Published by Blackwell Publishers Ltd. 108 Cowley Road Oxford OX4 IJF, UK and 350 main Street, Malden, MA 02148, USA Vol 26:161 207

  • Sundqvist B (2002) Colour response of Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula pubescens) subjected to heat treatment in capillary phase. Holz Roh Werkst 60(2):106–114. doi:10.1007/s00107-001-0273-x

    Article  Google Scholar 

  • Sykacek E, Gierlinger N, Wimmer R, Schwanninger M (2006) Prediction of natural durability of commercial available European and Siberian larch by near-infrared spectroscopy. Holzforschung 60(6):643–647. doi:10.1515/HF.2006.108

    Article  CAS  Google Scholar 

  • Taylor AM, Gartner BL, Morrell JJ (2002) Heartwood formation and natural durability: a review. Wood Fiber Sci 34:587–611

    CAS  Google Scholar 

  • Tsuchikawa S (2007) A review of recent near infrared research for wood and paper. Appl Spectrosc Rev 42(1):43–71. doi:10.1080/05704920601036707

    Article  CAS  Google Scholar 

  • Tsuchikawa S, Inoue K, Mitsui K (2004) Spectroscopic monitoring of wood charactrsitics variation by light-irradiation. For Prod J 54(11):71–76

    Google Scholar 

  • Umetrics AB (2005) SIMCA-P+11. Umetrics AB, Umeå, Sweden. http://www.umetrics.com

  • Wold S (1978) Cross validatory estimation of the number of components in factor and principal components models. Technometrics 20(4):397–405. doi:10.2307/1267639

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Norrskogs Forskningsstiftelse, The Swedish Agency for Innovation Systems—VINNOVA and the Swedish Forest Industries Federation (Wood mechanical section) for supporting this work. Thanks to the staff at Vindeln’s Experimental Forest for helping with the selection of the trees and with the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Sandberg.

Additional information

Communicated by T. Seifert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandberg, K., Sterley, M. Separating Norway spruce heartwood and sapwood in dried condition with near-infrared spectroscopy and multivariate data analysis. Eur J Forest Res 128, 475–481 (2009). https://doi.org/10.1007/s10342-009-0296-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-009-0296-0

Keywords

Navigation