Skip to main content
Log in

Implantation eines neuen, aktiven, knochenverankerten elektronischen Hörimplantats mit verkleinerter Geometrie

Implantation of a new active bone conduction hearing device with optimized geometry. German version

  • OP-Techniken
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Im vorliegenden Beitrag wird die Technik der Implantation eines neuen aktiven, transkutanen, knochenverankerten Hörimplantats beschrieben. Das Hörimplantat basiert technisch auf einem System, das bereits seit 2012 zuverlässig im Einsatz ist. Die Geometrie des neuen Systems ist an die Erfahrungen mit vorangegangenen Implantaten angepasst. Die Op. ist standardisiert und sicher durchführbar. Aufgrund der optimierten Bauform mit verbesserter Passfähigkeit im Schläfenbein erscheint eine spezielle, detaillierte präoperative Planung der Implantation nur noch in Fällen mit besonderen anatomischen Gegebenheiten, wie z. B. bei Kindern, bei Fehlbildungen, bei schlechter Pneumatisation des Schläfenbeins und nach Anlage einer offenen Mastoidhöhle notwendig.

Abstract

Here, we describe the surgical technique for implanting a new, active, transcutaneous bone conduction hearing aid. The implant technology is based on a system that has been in use reliably since 2012. The geometry of the new implant has been adapted based on experience with previously introduced implants. The surgery was feasible, standardized, and safe. Due to the optimized geometric design that improved the bone fit, it is not necessary to use specialized, detailed preoperative planning, except in challenging anatomical conditions; e.g., in young children, malformations, poor pneumatization, or after a canal wall down mastoidectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Literatur

  1. Anonymous MED-EL Medical Electronics. Bonebridge (BCI 602) Surgical Guide V 2.0 (2019). In: MED-EL, Innsbruck, Austria

  2. Arnold H, Schulze M, Wolpert S et al (2018) Positioning a novel transcutaneous bone conduction hearing implant: a systematic anatomical and radiological study to standardize the retrosigmoid approach, correlating navigation-guided, and landmark-based surgery. Otol Neurotol 39:458–466

    Article  Google Scholar 

  3. Baumgartner WD, Hamzavi JS, Boheim K et al (2016) A new transcutaneous bone conduction hearing implant: short-term safety and efficacy in children. Otol Neurotol 37:713–720

    Article  Google Scholar 

  4. Beutner D, Delb W, Frenzel H et al (2018) Guideline “Implantable hearing aids”-short version : German S2k guideline of the Working Group of German-speaking Audiologists, Neurootologists and Otologists (ADANO), of the German Society of Oto-Rhino-Laryngology, Head and Neck Surgery (DGHNO) in collaboration with the German Society of Audiology (DGA), the German Society of Phoniatrics and Pediatric Audiology (DGPP), and patient representatives. HNO 66:654–659

    Article  CAS  Google Scholar 

  5. Brkic FF, Riss D, Scheuba K et al (2019) Medical, technical and audiological outcomes of hearing rehabilitation with the bonebridge transcutaneous bone-conduction implant: a single-center experience. J Clin Med 8:1614. https://doi.org/10.3390/jcm8101614

    Article  Google Scholar 

  6. Canis M, Ihler F, Blum J et al (2013) CT-assisted navigation for retrosigmoidal implantation of the Bonebridge. HNO 61(12):1038–1044

    Article  CAS  Google Scholar 

  7. Cho B, Matsumoto N, Mori M et al (2014) Image-guided placement of the bonebridge without surgical navigation equipment. Int J Comput Assist Radiol Surg 9:845–855

    Article  Google Scholar 

  8. Edmiston RC, Aggarwal R, Green KM (2015) Bone conduction implants—a rapidly developing field. J Laryngol Otol 129:936–940

    Article  CAS  Google Scholar 

  9. Frenzel H, Hanke F, Beltrame M et al (2010) Application of the vibrant soundbridge in bilateral congenital atresia in toddlers. Acta Otolaryngol 130:966–970

    Article  Google Scholar 

  10. Fussey JM, Harterink E, Gill J et al (2018) Clinical outcomes following Cochlear BIA300 bone anchored hearing aid implantation in children. Int J Pediatr Otorhinolaryngol 111:89–92

    Article  Google Scholar 

  11. Kiringoda R, Lustig LR (2013) A meta-analysis of the complications associated with osseointegrated hearing aids. Otol Neurotol 34:790–794

    Article  Google Scholar 

  12. Kong TH, Park YA, Seo YJ (2017) Image-guided implantation of the Bonebridge with a surgical navigation: a feasibility study. Int J Surg Case Rep 30:112–117

    Article  Google Scholar 

  13. Law EK, Bhatia KS, Tsang WS et al (2016) CT pre-operative planning of a new semi-implantable bone conduction hearing device. Eur Radiol 26:1686–1695

    Article  Google Scholar 

  14. Magele A, Schoerg P, Stanek B et al (2019) Active transcutaneous bone conduction hearing implants: systematic review and meta-analysis. PLoS ONE 14:e221484

    Article  CAS  Google Scholar 

  15. Matsumoto N, Takumi Y, Cho B et al (2015) Template-guided implantation of the Bonebridge: clinical experience. Eur Arch Otorhinolaryngol 272:3669–3675

    Article  Google Scholar 

  16. Mertens G, Desmet J, Snik AF et al (2014) An experimental objective method to determine maximum output and dynamic range of an active bone conduction implant: the Bonebridge. Otol Neurotol 35:1126–1130

    Article  Google Scholar 

  17. Plontke SK, Radetzki F, Seiwerth I et al (2014) Individual computer-assisted 3D planning for surgical placement of a new bone conduction hearing device. Otol Neurotol 35:1251–1257

    Article  Google Scholar 

  18. Rader T, Stover T, Lenarz T et al (2018) Retrospective analysis of hearing-impaired adult patients treated with an active transcutaneous bone conduction implant. Otol Neurotol 39:874–881

    Article  Google Scholar 

  19. Rahne T, Plontke SK (2016) Device-based treatment of mixed hearing loss: an audiological comparison of current hearing systems. HNO 64:91–100

    Article  CAS  Google Scholar 

  20. Rahne T, Schilde S, Seiwerth I et al (2016) Mastoid dimensions in children and young adults: consequences for the geometry of transcutaneous bone-conduction implants. Otol Neurotol 37:57–61

    Article  Google Scholar 

  21. Reinfeldt S, Hakansson B, Taghavi H et al (2015) New developments in bone-conduction hearing implants: a review. Med Devices 8:79–93

    Article  Google Scholar 

  22. Reinfeldt S, Ostli P, Hakansson B et al (2015) Study of the feasible size of a bone conduction implant transducer in the temporal bone. Otol Neurotol 36:631–637

    Article  Google Scholar 

  23. Salcher R, Zimmermann D, Giere T et al (2017) Audiological results in SSD with an active transcutaneous bone conduction implant at a retrosigmoidal position. Otol Neurotol 38:642–647

    Article  Google Scholar 

  24. Sardiwalla Y, Jufas N, Morris DP (2018) Long term follow-up demonstrating stability and patient satisfaction of minimally invasive punch technique for percutaneous bone anchored hearing devices. J Otolaryngol Head Neck Surg 47:71

    Article  Google Scholar 

  25. Schilde S, Plontke SK, Rahne T (2017) A three-dimensional geometric-morphometric study to quantify temporal bone growth and its consequences for the success of implanting bone anchored hearing devices. Otol Neurotol 38:721–729

    Article  Google Scholar 

  26. Sprinzl GM, Wolf-Magele A (2016) The Bonebridge bone conduction hearing implant: indication criteria, surgery and a systematic review of the literature. Clin Otolaryngol 41:131–143

    Article  CAS  Google Scholar 

  27. Takumi Y, Matsumoto N, Cho B et al (2014) A clinical experience of ‘STAMP’ plate-guided Bonebridge implantation. Acta Otolaryngol 134:1042–1046

    Article  Google Scholar 

  28. Thomas JP, Van Ackeren K, Dazert S et al (2018) Transmastoid implantability of an active transcutaneous bone conduction implant in adults with regard to the underlying pathology: a radiological simulation study. Acta Otolaryngol 138:530–536

    Article  Google Scholar 

  29. Todt I, Lamecker H, Ramm H et al (2014) A computed tomographic data-based vibrant bonebridge visualization tool. Cochlear Implants Int 15(Suppl 1):S72–S74

    Article  Google Scholar 

  30. Todt I, Lamecker H, Ramm H et al (2014) Development of a computed tomography data-based Vibrant Bonebridge viewer. HNO 62:439–442

    Article  CAS  Google Scholar 

  31. Vickers D, Canas A, Degun A et al (2018) Evaluating the effectiveness and reliability of the vibrant soundbridge and Bonebridge auditory implants in clinical practice: study design and methods for a multi-centre longitudinal observational study. Contemp Clin Trials Commun 10:137–140

    Article  Google Scholar 

  32. Wagner L, Honig E, Frohlich L et al (2019) Optimal retention force of audio processor magnets. Otol Neurotol 40:e482–e487

    Article  Google Scholar 

  33. Wenzel C, Schilde S, Plontke SK et al (2020) Changes in Bone Conduction Implant Geometry Improve the Bone Fit in Healthy Mastoids of Children and Young Adults. Otol Neurotol [in press]

    Google Scholar 

  34. Wimmer W, Gerber N, Guignard J et al (2015) Topographic bone thickness maps for Bonebridge implantations. Eur Arch Otorhinolaryngol 272:1651–1658

    Article  Google Scholar 

  35. Zernotti ME, Sarasty AB (2015) Active bone conduction prosthesis: Bonebridge(TM). Int Arch Otorhinolaryngol 19:343–348

    Article  Google Scholar 

Download references

Danksagung

Wir bedanken uns bei der Fa. MED-EL (Innsbruck, Österreich) für die Zurverfügungstellung der Grafiken in den Abb. 1, 5A, und 6AC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Plontke.

Ethics declarations

Interessenkonflikt

Die Autoren weisen auf folgende Beziehungen hin: S.K. Plontke: AudioCure Pharma GmbH, Berlin (Beratungstätigkeit); Oticon Medical, Dänemark; Cochlear Ltd., Australien; Bundesministerium für Bildung und Forschung (Forschungsprojekte); BV-HNO e.V.; Merck Serono; Infectopharm; Dr. Willmar Schwabe GmbH & Co. KG, Deutschland (Vortragshonorare und Reisekostenerstattung). T. Rahne: Oticon Medical, Dänemark; Cochlear Ltd., Australien (Forschungsprojekte). S.K. Plontke, G. Götze, C. Wenzel, T. Rahne, R. Mlynski: MED-EL Österreich und MED-EL Deutschland (Forschungsprojekte); MED-EL Österreich und MED-EL Deutschland (Reisekostenerstattung bei Vortragstätigkeit).

Die hier beschriebene Durchführung der Hörrehabilitation erfolgt im Rahmen der Routineversorgung und nach individueller Aufklärung entsprechend der geltenden ethischen Richtlinien. Die „off-label“ Verwendung des Implantates (Abb. 3 und 10) erfolgte nach gesonderter Aufklärung der Eltern des Kindes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plontke, S.K., Götze, G., Wenzel, C. et al. Implantation eines neuen, aktiven, knochenverankerten elektronischen Hörimplantats mit verkleinerter Geometrie. HNO 68, 854–863 (2020). https://doi.org/10.1007/s00106-020-00876-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-020-00876-3

Schlüsselwörter

Keywords

Navigation