Skip to main content
Log in

Pathophysiologie der obstruktiven Schlafapnoe

Pathophysiology of obstructive sleep apnea

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Die Prävalenz der obstruktiven Schlafapnoe (OSA) wird in den westlichen Industrieländern als sehr hoch angenommen. Für die Behandlung des OSA gibt es konservative und operative Therapien. Die Pathophysiologie ist dennoch weitestgehend ungeklärt und lässt sich nicht allein durch anatomische Auffälligkeiten erklären. So konnte in den letzten Jahren eine Reihe nichtanatomischer Faktoren identifiziert werden, die die Entstehung einer OSA begünstigen. Hierunter fallen die respiratorische Erregungsschwelle (Arousals), der respiratorische Atemantrieb („loop gain“) sowie die Kontrolle und Funktion der oberen muskulären Atemwegsdilatatoren. Das Verständnis für die einzelnen pathophysiologischen Prozesse kann in der Zukunft hilfreich sein, um individuelle Therapieansätze für Patienten zu entwickeln.

Abstract

The prevalence of obstructive sleep apnea (OSA) is considered to be very high in western industrialized countries. There are conservative and surgical forms of treatment for OSA; however, the pathophysiology is largely unexplained and cannot be explained by anatomical abnormalities alone. In recent years, a number of non-anatomical factors have been found that favor the development of OSA. These include the respiratory excitation threshold (arousals), the respiratory drive (loop gain), as well as the control and function of the muscular upper airway dilators. The understanding of the individual pathophysiological processes may be helpful in the future to develop individual treatment approaches for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177:1006–1014

    Article  PubMed  PubMed Central  Google Scholar 

  2. Heinzer R, Vat S, Marques-Vidal P et al (2015) Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med 3:310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sullivan CE, Issa FG, Berthon-Jones M, Eves L (1981) Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1:862–865

    Article  CAS  PubMed  Google Scholar 

  4. Gulati A, Ali M, Davies M, Quinnell T, Smith I (2017) A prospective observational study to evaluate the effect of social and personality factors on continuous positive airway pressure (CPAP) compliance in obstructive sleep apnoea syndrome. Bmc Pulm Med 17:56

    Article  PubMed  PubMed Central  Google Scholar 

  5. Heiser C, Hofauer B (2016) Hypoglossal nerve stimulation in patients with CPAP failure : evolution of an alternative treatment for patients with obstructive sleep apnea. HNO. https://doi.org/10.1007/s00106-016-0247-2

    Article  PubMed  Google Scholar 

  6. Heiser C, Maurer JT, Hofauer B, Sommer JU, Seitz A, Steffen A (2017) Outcomes of upper airway stimulation for obstructive sleep apnea in a Multicenter German Postmarket study. Otolaryngol Head Neck Surg 156:378–384

    Article  PubMed  Google Scholar 

  7. Heiser C, Steffen A, Boon M et al (2019) Post-approval upper airway stimulation predictors of treatment effectiveness in the ADHERE registry. Eur Respir J 53. https://doi.org/10.1183/13993003.01405-2018

    Article  PubMed  PubMed Central  Google Scholar 

  8. Eckert DJ (2018) Phenotypic approaches to obstructive sleep apnoea—new pathways for targeted therapy. Sleep Med Rev 37:45–59

    Article  PubMed  Google Scholar 

  9. Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A (2013) Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med 188:996–1004

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schwab RJ, Pasirstein M, Pierson R et al (2003) Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am J Respir Crit Care Med 168:522–530

    Article  PubMed  Google Scholar 

  11. Younes M, Ostrowski M, Thompson W, Leslie C, Shewchuk W (2001) Chemical control stability in patients with obstructive sleep apnea. Am J Respir Crit Care Med 163:1181–1190

    Article  CAS  PubMed  Google Scholar 

  12. Wellman A, Jordan AS, Malhotra A et al (2004) Ventilatory control and airway anatomy in obstructive sleep apnea. Am J Respir Crit Care Med 170:1225–1232

    Article  PubMed  Google Scholar 

  13. Eckert DJ, Malhotra A, Wellman A, White DP (2014) Trazodone increases the respiratory arousal threshold in patients with obstructive sleep apnea and a low arousal threshold. Sleep 37:811–819

    Article  PubMed  PubMed Central  Google Scholar 

  14. Eckert DJ, Younes MK (1985) Arousal from sleep: implications for obstructive sleep apnea pathogenesis and treatment. J Appl Physiol 116:302–313

    Article  CAS  Google Scholar 

  15. Younes M, Ostrowski M, Atkar R, Laprairie J, Siemens A, Hanly P (1985) Mechanisms of breathing instability in patients with obstructive sleep apnea. J Appl Physiol 103:1929–1941

    Article  Google Scholar 

  16. Neelapu BC, Kharbanda OP, Sardana HK et al (2017) Craniofacial and upper airway morphology in adult obstructive sleep apnea patients: a systematic review and meta-analysis of cephalometric studies. Sleep Med Rev 31:79–90

    Article  PubMed  Google Scholar 

  17. Kim AM, Keenan BT, Jackson N et al (2014) Tongue fat and its relationship to obstructive sleep apnea. Sleep 37:1639–1648

    Article  PubMed  PubMed Central  Google Scholar 

  18. Degache F, Sforza E, Dauphinot V et al (2013) Relation of central fat mass to obstructive sleep apnea in the elderly. Sleep 36:501–507

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stadler DL, McEvoy RD, Sprecher KE et al (2009) Abdominal compression increases upper airway collapsibility during sleep in obese male obstructive sleep apnea patients. Sleep 32:1579–1587

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chi L, Comyn FL, Mitra N et al (2011) Identification of craniofacial risk factors for obstructive sleep apnoea using three-dimensional MRI. Eur Respir J 38:348–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schorr F, Kayamori F, Hirata RP et al (2016) Different craniofacial characteristics predict upper airway collapsibility in Japanese-Brazilian and white men. Chest 149:737–746

    Article  PubMed  PubMed Central  Google Scholar 

  22. Genta PR, Eckert DJ, Gregorio MG et al (1985) Critical closing pressure during midazolam-induced sleep. J Appl Physiol 111:1315–1322

    Article  CAS  Google Scholar 

  23. Brown EC, Cheng S, McKenzie DK, Butler JE, Gandevia SC, Bilston LE (2015) Tongue stiffness is lower in patients with obstructive sleep apnea during wakefulness compared with matched control subjects. Sleep 38:537–544

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stoohs RA, Knaack L, Blum HC, Janicki J, Hohenhorst W (2008) Differences in clinical features of upper airway resistance syndrome, primary snoring, and obstructive sleep apnea/hypopnea syndrome. Sleep Med 9:121–128

    Article  PubMed  Google Scholar 

  25. Stoohs R, Janicki J, Hohenhorst W (2007) Obstructive sleep apnea syndrome and upper airway resistance syndrome. Gender-related differences. HNO 55:792–797

    Article  CAS  PubMed  Google Scholar 

  26. Ong JS, Touyz G, Tanner S, Hillman DR, Eastwood PR, Walsh JH (2011) Variability of human upper airway collapsibility during sleep and the influence of body posture and sleep stage. J Sleep Res 20:533–537

    Article  PubMed  Google Scholar 

  27. Kirkness JP, Madronio M, Stavrinou R, Wheatley JR, Amis TC (1985) Relationship between surface tension of upper airway lining liquid and upper airway collapsibility during sleep in obstructive sleep apnea hypopnea syndrome. J Appl Physiol 95:1761–1766

    Article  Google Scholar 

  28. White LH, Bradley TD (2013) Role of nocturnal rostral fluid shift in the pathogenesis of obstructive and central sleep apnoea. J Physiol 591:1179–1193

    Article  PubMed  Google Scholar 

  29. Gleadhill IC, Schwartz AR, Schubert N, Wise RA, Permutt S, Smith PL (1991) Upper airway collapsibility in snorers and in patients with obstructive hypopnea and apnea. Am Rev Respir Dis 143:1300–1303

    Article  CAS  PubMed  Google Scholar 

  30. Sforza E, Petiau C, Weiss T, Thibault A, Krieger J (1999) Pharyngeal critical pressure in patients with obstructive sleep apnea syndrome. Clinical implications. Am J Respir Crit Care Med 159:149–157

    Article  CAS  PubMed  Google Scholar 

  31. Saboisky JP, Butler JE, Fogel RB et al (2006) Tonic and phasic respiratory drives to human genioglossus motoneurons during breathing. J Neurophysiol 95:2213–2221

    Article  PubMed  Google Scholar 

  32. Carberry JC, Jordan AS, White DP, Wellman A, Eckert DJ (2016) Upper airway collapsibility (Pcrit) and pharyngeal dilator muscle activity are sleep stage dependent. Sleep 39:511–521

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nicholas CL, Jordan AS, Heckel L et al (2012) Discharge patterns of human tensor palatini motor units during sleep onset. Sleep 35:699–707

    PubMed  PubMed Central  Google Scholar 

  34. Basner RC, Ringler J, Schwartzstein RM, Weinberger SE, Weiss JW (1991) Phasic electromyographic activity of the genioglossus increases in normals during slow-wave sleep. Respir Physiol 83:189–200

    Article  CAS  PubMed  Google Scholar 

  35. Eckert DJ, Malhotra A, Lo YL, White DP, Jordan AS (2009) The influence of obstructive sleep apnea and gender on genioglossus activity during rapid eye movement sleep. Chest 135:957–964

    Article  PubMed  Google Scholar 

  36. Sands SA, Eckert DJ, Jordan AS et al (2014) Enhanced upper-airway muscle responsiveness is a distinct feature of overweight/obese individuals without sleep apnea. Am J Respir Crit Care Med 190:930–937

    Article  PubMed  PubMed Central  Google Scholar 

  37. Genta PR, Owens RL, Edwards BA et al (2014) Influence of pharyngeal muscle activity on inspiratory negative effort dependence in the human upper airway. Respir Physiol Neurobiol 201:55–59

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brown EC, Cheng S, McKenzie DK, Butler JE, Gandevia SC, Bilston LE (2013) Respiratory movement of upper airway tissue in obstructive sleep apnea. Sleep 36:1069–1076

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wellman A, Edwards BA, Sands SA et al (1985) A simplified method for determining phenotypic traits in patients with obstructive sleep apnea. J Appl Physiol 114:911–922

    Article  CAS  Google Scholar 

  40. Dotan Y, Pillar G, Schwartz AR, Oliven A (1985) Asynchrony of lingual muscle recruitment during sleep in obstructive sleep apnea. J Appl Physiol 118:1516–1524

    Article  Google Scholar 

  41. Saboisky JP, Butler JE, Gandevia SC, Eckert DJ (2012) Functional role of neural injury in obstructive sleep apnea. Front Neurol 3:95

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zaidi FN, Meadows P, Jacobowitz O, Davidson TM (2013) Tongue anatomy and physiology, the scientific basis for a novel targeted neurostimulation system designed for the treatment of obstructive sleep apnea. Neuromodulation 16:376–386 (discussion 86)

    Article  PubMed  Google Scholar 

  43. Eckert DJ, Malhotra A, Jordan AS (2009) Mechanisms of apnea. Prog Cardiovasc Dis 51:313–323

    Article  PubMed  PubMed Central  Google Scholar 

  44. Treml M, Lacerda C, Kietzmann I, Randerath WJ (2017) Loop Gain bei Herzinsuffizienzpatienten mit Cheyne-Stokes-Atmung. Pneumologie 71:S1–S125

    Google Scholar 

  45. Phillipson EA, Arousal SCE (1978) the forgotten response to respiratory stimuli. Am Rev Respir Dis 118:807–809

    CAS  PubMed  Google Scholar 

  46. Gleeson K, Zwillich CW, White DP (1990) The influence of increasing ventilatory effort on arousal from sleep. Am Rev Respir Dis 142:295–300

    Article  CAS  PubMed  Google Scholar 

  47. Younes M (2004) Role of arousals in the pathogenesis of obstructive sleep apnea. Am J Respir Crit Care Med 169:623–633

    Article  PubMed  Google Scholar 

  48. Gray EL, McKenzie DK, Eckert DJ (2017) Obstructive sleep apnea without obesity is common and difficult to treat: evidence for a distinct pathophysiological phenotype. J Clin Sleep Med 13:81–88

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dixon JB, Schachter LM, O’Brien PE et al (2012) Surgical vs conventional therapy for weight loss treatment of obstructive sleep apnea: a randomized controlled trial. JAMA 308:1142–1149

    Article  CAS  PubMed  Google Scholar 

  50. Carberry JC, Amatoury J, Eckert DJ (2018) Personalized management approach for OSA. Chest 153(3):744–755

    Article  PubMed  Google Scholar 

  51. Osman AM, Carter SG, Carberry JC, Eckert DJ (2018) Obstructive sleep apnea: current perspectives. Nat Sci Sleep 23(10):21–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Heiser.

Ethics declarations

Interessenkonflikt

C. Heiser ist als Berater für Inspire Medical Systems tätig. Er erhielt Reisekostenzuschüsse von Löwenstein Medical, Sutter Medizintechnik, Neuwirth Medical Products. Weiterhin ist er im Advisory Board von Galvani Bioelectronics. D. Eckert hat ein Forschungsstipendium von Bayer und Apnimed erhalten. Er verfügt über ein CRC-P-Stipendium (Cooperative Research Center). Weiterhin erhielt er finanzielle Unterstützung von der australischen Regierung und Industriepartner Oventus Medical.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Bei dieser Arbeit handelt es sich um eine modifizierte Übersetzung der Originalarbeit von D. Eckert aus dem Jahre 2018 [8]. Der Abdruck erfolgt mit freundlicher Genehmigung des Elsevier-Verlages.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiser, C., Eckert, D. Pathophysiologie der obstruktiven Schlafapnoe. HNO 67, 654–662 (2019). https://doi.org/10.1007/s00106-019-0720-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-019-0720-9

Schlüsselwörter

Keywords

Navigation