Skip to main content

Advertisement

Log in

Molekulare Netzwerke von Hypoxie und neuronaler Apoptose in der Cochlea

Molecular networks of hypoxia and neuronal apoptosis in the cochlea

  • Originalien
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

In organotypischen Kulturen zeigt die Region des Modiolus (MOD) von neugeborenen Ratten eine 4‑fach höhere Rate des Zelltods als die Region des Corti-Organs (OC). Die unterschiedliche Vulnerabilität geht mit einer differenziellen Expression zahlreicher Gene einher.

Methodik

Organotypische Kulturen von OC und MOD von 3–5 Tage alten Ratten wurden einer norm- bzw. hypoxischen (pO2: 10–20 mmHg; 5 h) Atmosphäre ausgesetzt. 24 h nach Anlegen der Kultur wurde die Zelltodrate bestimmt und die Expression mittels c‑DNA-Microarray untersucht. Mithilfe der DAVID-Datenbank wurden aus einer Liste von 60 Genen mit veränderter Expression biologische Prozesse entsprechend der Gene-Ontology-Datenbank (GO) zugeordnet. Molekulare Netzwerke wurden mithilfe der Datenbanken STRING und ConsensusPathDB erstellt.

Ergebnisse

Das Netzwerk der GO-Annotationen „Hypoxie“, „Entzündung“ und „mechanischer Stimulus“ deutet auf das Vorliegen von 2 Gen-Clustern, einem Cluster mit proinflammatorischen Genen (Ccl3, Cxcl2, Cxcr4, Ccl20) und einem Cluster mit hypoxieassoziierten Genen (c-Jun, Hif1a und Vegfa). Das Netzwerk der GO-Annotationen „positive und negative neuronale Apoptose“ lässt vermuten, dass die unterschiedliche Expression der Gene c-Jun, Ngfr und Casp3 von entscheidender Bedeutung für die Regulation des programmierten Zelltods von neuronalen Zellen des OC und MOD ist.

Schlussfolgerung

Während c‑JUN als ein wichtiger Modulator des Gleichgewichts zwischen Zelltod und Überleben wirkt, scheinen die Assoziationen von NGFR und CASP3 bedeutsam für die Einleitung des Zelltods zu sein. Die Auswertung und Anwendung von Erkenntnissen aus biostatistischen Datenbanken sind ein wichtiges Mittel für das Verständnis der Funktion von einzelnen Genen und Gen-Clustern in medizinisch relevanten biologischen Prozessen.

Abstract

Background

In organotypic cultures, the modiolus (MOD) region of newborn rats shows a fourfold higher rate of cell death than the organ of Corti (OC). The differing vulnerability of OC and MOD cells is related to differential expression of numerous genes (DEG).

Materials and methods

Organotypic cultures of OC and MOD of 3–5-day-old rats were exposed to a normoxic or a hypoxic (pO2 10–20 mmHg; 5 h) atmosphere. Cell death rate and gene expression as detected by c‑DNA microarray analysis were determined 24 h after the culture was created. Genes with modified expression (n = 60) were analyzed for biological processes according to the DAVID Gene Ontology Database (GO). Molecular networks were created using the STRING and ConsensusPathDB databases.

Results

The network of the GO annotations “hypoxia”, “inflammation”, and “mechanical stimulus” indicates the existence of two gene clusters: a cluster with pro-inflammatory genes (Ccl3, Cxcl2, Cxcr4, Ccl20) and a cluster with hypoxia-associated genes (e.g., c-Jun, Hif1a, and Vegfa). The network of the GO annotations “positive and negative regulation of neuron apoptotic process” suggests that the differential expression of c-Jun, Ngfr, and Casp3 is important for regulation of programmed cell death in neuronal cells of the OC and MOD.

Conclusion

While c‑JUN acts as an important modulator of the balance between cell death and survival, the associations of NGFR and CASP3 seem to be significant for the initiation of cell death. The evaluation and application of findings from biostatistical databases is important for understanding the function of individual genes and gene clusters in medically relevant biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Andreeva N, Nyamaa A, Haupt H, Gross J, Mazurek B (2006) Recombinant human erythropoietin prevents ischemia-induced apoptosis and necrosis in explant cultures of the rat organ of Corti. Neurosci Lett 396:86–90

    Article  CAS  PubMed  Google Scholar 

  2. Charalampopoulos I, Vicario A, Pediaditakis I, Gravanis A, Simi A, Ibanez CF (2012) Genetic dissection of neurotrophin signaling through the p75 neurotrophin receptor. Cell Rep 2:1563–1570

    Article  CAS  PubMed  Google Scholar 

  3. Chen YC, Li X, Liu L, Wang J, Lu CQ, Yang M, Jiao Y, Zang FC, Radziwon K, Chen GD, Sun W, Krishnan Muthaiah VP, Salvi R, Teng GJ (2015) Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network. Elife 4:e6576

    Article  PubMed Central  PubMed  Google Scholar 

  4. Du Y, Deng W, Wang Z, Ning M, Zhang W, Zhou Y, Lo EH, Xing C (2017) Differential subnetwork of chemokines/cytokines in human, mouse, and rat brain cells after oxygen-glucose deprivation. J Cereb Blood Flow Metab 37:1425–1434

    Article  CAS  PubMed  Google Scholar 

  5. Feng H, Yin SH, Tang AZ, Tan SH (2011) Salicylate initiates apoptosis in the spiral ganglion neuron of guinea pig cochlea by activating caspase-3. Neurochem Res 36:1108–1115

    Article  CAS  PubMed  Google Scholar 

  6. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci USA 104:8685–8690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gross J, Kuban R, Ungethüm U, Mazurek B (2009) Chapter IV. Normal and injury-induced gene expression in the developing postnatal rat inner ear. In: Kurzfield NC (ed.) Developmental Gene Expression Regulation. Nova Science, Hauppauge, p 91–115.

    Google Scholar 

  8. Gross J, Olze H, Mazurek B (2015) Gene expression patterns in functionally different cochlear compartments of the newborn rat. J Mol Biol Res 5:20–31

    Article  Google Scholar 

  9. Gross J, Machulik A, Amarjargal N, Moller R, Ungethum U, Kuban RJ, Fuchs FU, Andreeva N, Fuchs J, Henke W, Pohl EE, Szczepek AJ, Haupt H, Mazurek B (2007) Expression of apoptosis-related genes in the organ of Corti, modiolus and stria vascularis of newborn rats. Brain Res 1162:56–68

    Article  CAS  PubMed  Google Scholar 

  10. Gross J, Machulik A, Moller R, Fuchs J, Amarjargal N, Ungethuem U, Kuban RJ, Szczepek AJ, Haupt H, Mazurek B (2008) mRNA expression of members of the IGF system in the organ of Corti,the modiolus and the stria vascularis of newborn rats. Growth Factors 26:180–191

    Article  CAS  PubMed  Google Scholar 

  11. Gross J, Moller R, Amarjargal N, Machulik A, Fuchs J, Ungethum U, Kuban RJ, Henke W, Haupt H, Mazurek B (2009) Expression of erythropoietin and angiogenic growth factors following inner ear injury of newborn rats. Prague Med Rep 110:310–331

    CAS  PubMed  Google Scholar 

  12. Gross J, Olze H, Mazurek B (2014) Differential expression of transcription factors and inflammation‑, ROS-, and cell death-related genes in organotypic cultures in the modiolus, the organ of Corti and the stria vascularis of newborn rats. Cell Mol Neurobiol 34:523–538

    Article  CAS  PubMed  Google Scholar 

  13. Gross J, Olze H, Mazurek B (2015) Expression of nestin-associated genes in the inner ear of newborn rats following injury and hypoxia. Inflamm Cell Signal 2:e549. https://doi.org/10.14800/ics.549

    Article  CAS  Google Scholar 

  14. Gross J, Rheinlander C, Fuchs J, Mazurek B, Machulik A, Andreeva N, Kietzmann T (2003) Expression of hypoxia-inducible factor-1 in the cochlea of newborn rats. Hear Res 183:73–83

    Article  CAS  PubMed  Google Scholar 

  15. Hattermann K, Knerlich-Lukoschus F, Lucius R, Mehdorn M, Held-Feindt J (2015) Erythropoietin and CCL3 antagonise their functional properties during neuroinflammation. Neurol Res 37:1025–1028

    Article  CAS  PubMed  Google Scholar 

  16. Herwig R, Hardt C, Lienhard M, Kamburov A (2016) Analyzing and interpreting genome data at the network level with ConsensusPathDB. Nat Protoc 11:1889–1907

    Article  CAS  PubMed  Google Scholar 

  17. Knipper M, Van DP, Nunes I, Ruttiger L, Zimmermann U (2013) Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 111:17–33

    Article  PubMed  Google Scholar 

  18. Krieser RJ, Eastman A (1999) Cleavage and nuclear translocation of the caspase 3 substrate Rho GDP-dissociation inhibitor, D4-GDI, during apoptosis. Cell Death Differ 6:412–419

    Article  CAS  PubMed  Google Scholar 

  19. Longo FM, Massa SM (2013) Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease. Nat Rev Drug Discov 12:507–525

    Article  CAS  PubMed  Google Scholar 

  20. Mazurek B, Amarjargal N, Haupt H, Fuchs J, Olze H, Machulik A, Gross J (2011) Expression of genes implicated in oxidative stress in the cochlea of newborn rats. Hear Res 277:54–60

    Article  CAS  PubMed  Google Scholar 

  21. Mazurek B, Machulik A, Amarjargal N, Kuban RJ, Ungethuem U, Fuchs J, Haupt H, Gross J (2006) Gene expression of organ of Corti (OC), modiolus (MOD) and stria vascularis (SV) of newborn rats (Gene Expression Omnibus (GEO) website (http://www.ncbi.nlm.nih.gov/geo/) ID GSE5446)

    Google Scholar 

  22. Mazurek B, Rheinlander C, Fuchs FU, Amarjargal N, Kuban RJ, Ungethum U, Haupt H, Kietzmann T, Gross J (2006) Influence of ischemia/hypoxia on the HIF-1 activity and expression of hypoxia-dependent genes in the cochlea of the newborn rat. HNO 54:689–697

    Article  CAS  PubMed  Google Scholar 

  23. Mazurek B, Winter E, Fuchs J, Haupt H, Gross J (2003) Susceptibility of the hair cells of the newborn rat cochlea to hypoxia and ischemia. Hear Res 182:2–8

    Article  PubMed  Google Scholar 

  24. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:D433–D437

    Article  CAS  Google Scholar 

  25. Meng Q, Xia Y (2011) c‑Jun, at the crossroad of the signaling network. Protein Cell 2:889–898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Michiels C, Minet E, Mottet D, Raes M (2002) Regulation of gene expression by oxygen: NF-kappaB and HIF-1, two extremes. Free Radic Biol Med 33:1231–1242

    Article  CAS  PubMed  Google Scholar 

  27. Mukai J, Shoji S, Kimura MT, Okubo S, Sano H, Suvanto P, Li Y, Irie S, Sato TA (2002) Structure-function analysis of NADE: identification of regions that mediate nerve growth factor-induced apoptosis. J Biol Chem 277:13973–13982

    Article  CAS  PubMed  Google Scholar 

  28. Pediaditakis I, Kourgiantaki A, Prousis KC, Potamitis C, Xanthopoulos KP, Zervou M, Calogeropoulou T, Charalampopoulos I, Gravanis A (2016) BNN27, a 17-spiroepoxy steroid derivative, interacts with and activates p75 neurotrophin receptor, rescuing cerebellar granule neurons from apoptosis. Front Pharmacol 7:512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Raphael Y, Altschuler RA (2003) Structure and innervation of the cochlea. Brain Res Bull 60:397–422

    Article  PubMed  Google Scholar 

  30. Ruan Q, Wang D, Gao H, Liu A, Da C, Yin S, Chi F (2007) The effects of different auditory activity on the expression of phosphorylated c‑Jun in the auditory system. Acta Otolaryngol 127:594–604

    Article  CAS  PubMed  Google Scholar 

  31. Sano H, Mukai J, Monoo K, Close LG, Sato TA (2001) Expression of p75NTR and its associated protein NADE in the rat cochlea. Laryngoscope 111:535–538

    Article  CAS  PubMed  Google Scholar 

  32. Sebastiani A, Golz C, Werner C, Schafer MK, Engelhard K, Thal SC (2015) Proneurotrophin binding to P75 neurotrophin receptor (P75ntr) is essential for brain lesion formation and functional impairment after experimental traumatic brain injury. J Neurotrauma 32:1599–1607

    Article  PubMed  Google Scholar 

  33. Shi J, Longo FM, Massa SM (2013) A small molecule p75(NTR) ligand protects neurogenesis after traumatic brain injury. Stem Cells 31:2561–2574

    Article  CAS  PubMed  Google Scholar 

  34. Stankiewicz TR, Linseman DA (2014) Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 8:314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mehring C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368

    Article  CAS  PubMed  Google Scholar 

  36. Tabuchi K, Nishimura B, Nakamagoe M, Hayashi K, Nakayama M, Hara A (2011) Ototoxicity: mechanisms of cochlear impairment and its prevention. Curr Med Chem 18:4866–4871

    Article  CAS  PubMed  Google Scholar 

  37. Van de Water TR, Lallemend F, Eshraghi AA, Ahsan S, He J, Guzman J, Polak M, Malgrange B, Lefebvre PP, Staecker H, Balkany TJ (2004) Caspases, the enemy within, and their role in oxidative stress-induced apoptosis of inner ear sensory cells. Otol Neurotol 25:627–632

    Article  Google Scholar 

  38. Vicario A, Kisiswa L, Tann JY, Kelly CE, Ibanez CF (2015) Neuron-type-specific signaling by the p75NTR death receptor is regulated by differential proteolytic cleavage. J Cell Sci 128:1507–1517

    Article  CAS  PubMed  Google Scholar 

  39. Zhang W, Potrovita I, Tarabin V, Herrmann O, Beer V, Weih F, Schneider A, Schwaninger M (2005) Neuronal activation of NF-kappaB contributes to cell death in cerebral ischemia. J Cereb Blood Flow Metab 25:30–40

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gross.

Ethics declarations

Interessenkonflikt

J. Gross, H. Olze und B. Mazurek geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gross, J., Olze, H. & Mazurek, B. Molekulare Netzwerke von Hypoxie und neuronaler Apoptose in der Cochlea. HNO 66, 677–685 (2018). https://doi.org/10.1007/s00106-018-0539-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-018-0539-9

Schlüsselwörter

Keywords

Navigation