Skip to main content

Advertisement

Log in

Neovaskularisation und freier mikrochirurgischer Transfer von in vitro gezüchteten Knorpelkonstrukten

Neovascularisation and free microsurgical transfer of cartilage-engineered constructs

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Um im Bereich des Tissue-Engineerings das Überleben, die Form und die Funktion des gezüchteten Gewebes sicherzustellen, müssen in vitro gezüchtete Zellkonstrukte neovaskularisiert werden. Dieser Artikel präsentiert eine effektive Methode der Neovaskularisation und des anschließenden freien mikrochirurgischen Transfers von Knorpelzellkonstrukten.

Material und Methoden

Zwölf weibliche Chinchilla-Bastard-Kaninchen wurden operiert. Für die Herstellung der Knorpelkonstrukte wurden Chondrozyten aus einer Ohrknorpelbiopsie in Monolayerkultur amplifiziert und anschließend in poröse Konstrukte aus Polycaprolacton gesiedelt. In jeden präfabrizierten Hautlappen wurden 3 Knorpelkonstrukte (2×2×0,5 cm) und ein Konstrukt ohne Zellen (als Kontrolle) implantiert. Der randomisierte Hautlappen wurde mit einer Dimension von 8×15 cm geplant und mittels Implantation eines a.-v.-Gefäßstiels neovaskularisiert. Nach 6 Wochen wurde der 3-D-Hautlappen komplett entfernt und – basierend auf dem implantierten Gefäßstiel – mikrochirurgisch frei replantiert. Die Auswertung der Konstruktvitalität, Neovaskularisation und Bildung von neuem Knorpel erfolgte makroskopisch, mikroangiographisch, histologisch und immunhistologisch.

Ergebnisse

Alle neovaskularisierten Hautlappen mit integrierten gezüchteten Knorpelkonstrukten konnten erfolgreich frei transplantiert werden. Die Knorpelkonstrukte waren gut im Lappen integriert und geschützt, gut neovaskularisiert und histologisch in Bezug auf Größe und Form stabil. Immunhistologisch zeigte sich knorpelähnliches Gewebe mit einer Neusynthese von extrazellulärer Matrix.

Fazit

Diese experimentelle Studie zeigte eine verlässliche Methode der Neovaskularisation und freien mikrochirurgischen Transplantation von gezüchteten Knorpelzellkonstrukten im präfabrizierten Lappen. In Bezug auf eine mögliche klinische Anwendung ist sie aufgrund des guten ästhetischen Ergebnisses mit minimalem Hebedefekt vielversprechend.

Abstract

Background

Clinical imperatives for new cartilage to replace or restore the function of traumatized or missing tissue as a consequence of trauma, inherent malformations or disease has led to the need for therapies or procedures to generate cartilage for clinical applications. To ensure shape, function, and survival, in vitro cartilage-engineered constructs need to be revascularized. This study presents a viable method for neovascularization and free microsurgical transfer of these in vitro constructs.

Material and methods

Twelve female Chinchilla Bastard rabbits were operated. Cartilage-engineered constructs were created by isolating chondrocytes from auricular biopsies, amplifying in monolayer culture, and then seeding them onto polycaprolactone scaffolds. In each prefabricated skin flap, three in vitro cartilage-engineered constructs measuring 2×2×0.5 cm and one construct without cells, which served as the control, were implanted beneath an 8×15-cm random-pattern skin flap, neovascularized by implantation of an arteriovenous vascular pedicle with maximal blood flow. After 6 weeks, the neovascularized flaps with embedded cartilage-engineered constructs were completely removed based on the newly implanted vascular pedicle, and then freely retransferred into position using microsurgery. Macroscopic observation, histology, selective microangiography, and immunohistochemistry were performed to determine the construct vitality, neovascularization, and new cartilage formation.

Results

All neovascularized skin flaps with embedded tissue-engineered cartilage constructs were effectively free-transferred as free flaps. The implanted constructs were protected and well integrated within the flap. All constructs were well neovascularized and showed histologically stability in both form and size. Immunohistology showed the existence of cartilage-like tissue with extracellular matrix neosynthesis.

Conclusion

Our experimental study revealed the reliable ability of neovascularization and free microsurgical transplantation of cartilage-engineered constructs using prefabricated flaps. With respect to effective clinical application, engineered cartilage composed of a patient’s own cells can become a feasible option for the reconstruction of large cartilage defects or auricular reconstruction using this method. The procedure also represents a promising alternative for clinical practice due to minimal donor site morbidity and favorable aesthetic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Literatur

  1. Baek CH, Ko YJ (2006) Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold. Laryngoscope 116(10):1829–1834

    Article  PubMed  CAS  Google Scholar 

  2. Britt JC, Park SS (1998) Autogenous tissue-engineered cartilage: evaluation as an implant material. Arch Otolaryngol Head Neck Surg 124(6):671–677

    PubMed  CAS  Google Scholar 

  3. Cao Y, Rodriguez A et al (1998) Comparative study of the use of poly(glycolicacid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed 9(5):475–487

    Article  PubMed  CAS  Google Scholar 

  4. Chung C, Mesa J et al (2006) Effects of auricular chondrocyte expansion on neocartilage formation in photocrosslinked hyaluronic acid networks. Tissue Eng 12(9):2665–2673

    Article  PubMed  CAS  Google Scholar 

  5. Cronin KJ, Messina A et al (2004) New murine model of spontaneous autologous tissue engineering, combining an arteriovenous pedicle with matrix materials. Plast Reconstr Surg 113(1):260–269

    Article  PubMed  Google Scholar 

  6. Eyrich D, Wiese H et al (2007) In vitro and in vivo cartilage engineering using a combination of chondrocyte-seeded long-term stable fibrin gels and polycaprolactone-based polyurethane scaffolds. Tissue Eng 13(9):2207–2218

    Article  PubMed  CAS  Google Scholar 

  7. Hoang NT, Hoehnke C, Hien PT, Mandlik V, Feucht A, Staudenmaier R (2009) Neovascularization and free microsurgical transfer of in vitro cartilage-engineered constructs. Microsurgery 29(1):52–61

    Article  PubMed  Google Scholar 

  8. Hoang NT, Kloeppel M et al (2005) Prefabrication of large fasciocutaneous flaps using an isolated arterialised vein as implanted vascular pedicle. Br J Plast Surg 58(5):632–639

    Article  PubMed  Google Scholar 

  9. Hoang NT, Kloeppel M et al (2005) Proposed new method for angiographically quantifying neovascularization in prefabricated flaps. Microsurgery 25(3):220–226

    Article  PubMed  Google Scholar 

  10. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  PubMed  CAS  Google Scholar 

  11. Kamil SH, Kojima K et al (2007) Tissue engineered cartilage: utilization of autologous serum and serum-free media for chondrocyte culture. Int J Pediatr Otorhinolaryngol 71(1):71–75

    Article  PubMed  CAS  Google Scholar 

  12. Morrison WA, Dvir E et al (1990) Prefabrication of thin transferable axial pattern skin flaps: an experimental study in rabbits. Br J Plast Surg 43(6):645–654

    Article  PubMed  CAS  Google Scholar 

  13. Muller FA, Muller L et al (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27(21):3955–3963

    Article  PubMed  Google Scholar 

  14. Neumeister MW, Wu T et al (2006) Vascularized tissue-engineered ears. Plast Reconstr Surg 117(1):116–122

    Article  PubMed  CAS  Google Scholar 

  15. Nguyen TH, Kloeppel M et al (2005) Study of the neovascularisation of prefabrication of flaps using a silicone sheet and an isolated arterial pedicle: experimental study in rabbits. Scand J Plast Reconstr Surg Hand Surg 39(6):326–333

    Article  PubMed  Google Scholar 

  16. Nguyen TH, Kloppel M et al (2004) Experimental investigation of neovascularisation in large prefabricated flaps after arteriovenous pedicle implantation. Handchir Mikrochir Plast Chir 36(4):212–217

    Article  PubMed  Google Scholar 

  17. Pribaz JJ, Fine N et al (1999) Flap prefabrication in the head and neck: a10-year experience. Plast Reconstr Surg 103(3):808–820

    Article  PubMed  CAS  Google Scholar 

  18. Rotter N, Aigner J et al (1998) Cartilage reconstruction in head and neck surgery: comparison of resorbable polymer scaffolds for tissue engineering of human septal cartilage. J Biomed Mater Res 42(3):347–356

    Article  PubMed  CAS  Google Scholar 

  19. Staudenmaier R, Hoang TN et al (2004) Flap prefabrication and prelamination with tissue-engineered cartilage. J Reconstr Microsurg 20(7):555–564

    Article  PubMed  Google Scholar 

  20. Tan BK, Chen HC et al (2004) Flap prefabrication – the bridge between conventional flaps and tissue-engineered flaps. Ann Acad Med Singapore 33(5):662–666

    PubMed  CAS  Google Scholar 

  21. Tanaka Y, Sung KC et al (2003) Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation? Plast Reconstr Surg 112(6):1636–1644

    Article  PubMed  Google Scholar 

  22. The Hoang N, Kloeppel M et al (2005) Neovascularization in prefabricated flaps using a tissue expander and an implanted arteriovenous pedicle. Microsurgery 25(3):213–219

    Article  Google Scholar 

  23. Vacanti CA (2006) The history of tissue engineering. J Cell Mol Med 10(3):569–576

    Article  PubMed  Google Scholar 

  24. Van Osch GJ, Van Der Veen SW et al (2000) Chondrogenic potential of in vitro multiplied rabbit perichondrium cells cultured in alginate beads in defined medium. Tissue Eng 6(4):321–330

    Article  Google Scholar 

  25. Yamamoto K, Tomita N et al (2007) Time-dependent changes in adhesive force between chondrocytes and silk fibroin substrate. Biomaterials 28(10):1838–1846

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Feucht.

Additional information

Unsere mit dem APKO-Preis der Arbeitsgemeinschaft Plastische, rekonstruktive und ästhetische Kopf-Hals-Chirurgie ausgezeichnete Originalarbeit zu dieser Übersichtsarbeit und die meisten Abbildungen wurden bereits mit dem Titel „Neovascularisation and free mircosurgical transfer of cartilage engineered constructs“ in der Zeitschrift Microsurgery veröffentlicht: [7]. Der Abdruck erfolgt mit freundl. Genehmigung von John Wiley & Sons, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feucht, A., Hoang, N., Hoehnke, C. et al. Neovaskularisation und freier mikrochirurgischer Transfer von in vitro gezüchteten Knorpelkonstrukten. HNO 59, 239–247 (2011). https://doi.org/10.1007/s00106-011-2270-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-011-2270-7

Schlüsselwörter

Keywords

Navigation