Skip to main content
Log in

Frühe Hörerfahrung und sensible Entwicklungsphasen

Early hearing experience and sensitive developmental periods

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

In dieser Übersicht über Studien zu funktionellen Defiziten im auditorischen Kortex kongenital gehörloser Tiere erfolgt deren Vergleich mit Bildgebungs- und psychophysischen Daten prälingual ertaubter Menschen. Es zeigt sich dabei, dass die Entwicklung des auditorischen Kortex von der fehlenden Hörerfahrung beeinflusst wird. Bei Menschen gibt es zum Erlangen des Hörens nach angeborener Gehörlosigkeit eine sensible Phase von 4 Jahren, doch schon in dieser Phase nimmt die kortikale Plastizität mit zunehmendem Alter ab. Die sensible Phase beruht auf entwicklungsbedingter Änderung der synaptischen Plastizität, Modifizierung der Synaptogenese und des Synapsenabbaus sowie der Vernetzung des auditorischen Kortex, außerdem sind dafür auch fehlende Top-down-Einflüsse von übergeordneten auditorischen Arealen wesentlich. All dies trägt bei zur Abnahme der Fähigkeit zur kortikalen Plastizität während der postnatalen Entwicklung bei. Daher ist aus neurophysiologischer Sicht die Früherkennung einer Schwerhörigkeit eine wichtige Voraussetzung für die wirksame Therapie.

Abstract

This article reviews the studies on functional deficits in the auditory cortex of congenitally deaf animals. It compares their results with psychophysical and imaging data obtained from prelingually deaf humans. The studies demonstrate that the development of the auditory cortex is affected by the absence of hearing experience. In humans, the restoration of hearing after congenital deafness shows a sensitive period of 4 years, whereas even within this sensitive period cortical plasticity is already decreasing with increasing age. The reasons for the sensitive period are developmental changes of synaptic plasticity, developmentally modified synaptogenesis and synaptic pruning as well as changes in connectivity of the auditory cortex. Absence of top-down interactions from higher order auditory areas is another cardinal reason for the sensitive period. All these mechanisms contribute to the decreasing capacity for cortical plasticity during postnatal development. From the developmental and neurophysiological point of view, an early identification of hearing loss is an important prerequisite for effective therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. Die kortikale Plastizität beschreibt die Fähigkeit des auditorischen Kortex, seine Antworteigenschaften erfahrungsbedingt zu verändern. Synaptische Plastizität hingegen bezeichnet die Fähigkeit einer einzelnen Synapse, ihre Effizienz aktivitätsabhängig zu verändern. Kortikale Plastizität ist mehr als synaptische Plastizität: Es ist ein Vorgang, an dem synaptische Plastizität von vielen Synapsen beteiligt ist. Nur die Synapsen können sich verändern, die an aktiven Neuronen befindlich sind, was von der Funktion ganzer neuronaler Netze abhängig ist. Zusätzlich sind an kortikaler Plastizität andere Plastizitätsformen beteiligt (Übersicht in [89]).

Literatur

  1. Aramakis VB, Hsieh CY, Leslie FM, Metherate R (2000) A critical period for nicotine-induced disruption of synaptic development in rat auditory cortex. J Neurosci 20: 6106–6116

    PubMed  CAS  Google Scholar 

  2. Bates E (1976) Language and context: The acquisition of pragmatics. Academic Press, New York

  3. Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3: 728–739

    PubMed  CAS  Google Scholar 

  4. Bickerton D (1990) Language and species. Univ. of Chicago Press, Chicago

  5. Bishop D, Mogford K (1993) Language development in exceptional circumstances. Lawrence Erlbaum Assoc, Howe, Hillsdale

  6. Blake J, Boysson-Bardies B (1992) Patterns in babbling: a cross-linguistic study. J Child Lang 19: 51–74

    Article  PubMed  CAS  Google Scholar 

  7. Bloom L (1970) Language development: Form and function in emerging grammar. MIT Press, Cambridge/MA

  8. Bonham BH, Cheung SW, Godey B, Schreiner CE (2004) Spatial organization of frequency response areas and rate/level functions in the developing AI. J Neurophysiol 91: 841–854

    PubMed  Google Scholar 

  9. Boysson-Bardies B, Sagart L, Durand C (1984) Discernible differences in the babbling of infants according to target language. J Child Lang 11: 1–15

    PubMed  Google Scholar 

  10. Brown R (1973) A first language. MIT Press, Cambridge/MA

  11. Brugge JF (1983) Development of the lower brainstem auditory nuclei. In: Romand R (ed) Development of auditory and vestibular systems, 1st edn. Academic Press, New York, pp 89–120

  12. Brugge JF, Reale RA, Wilson GF (1988) Sensitivity of auditory cortical neurons of kittens to monaural and binaural high frequency sound. Hear Res 34: 127–140

    PubMed  CAS  Google Scholar 

  13. Busby PA, Clark GM (1999) Gap detection by early-deafened cochlear-implant subjects. J Acoust Soc Am 105: 1841–1852

    PubMed  CAS  Google Scholar 

  14. Busby PA, Clark GM (2000) Pitch estimation by early-deafened subjects using a multiple-electrode cochlear implant. J Acoust Soc Am 107: 547–558

    PubMed  CAS  Google Scholar 

  15. Cant NB (1998) Structural development of the mammalian auditory pathways. In: Rubel EW, Popper AN, Fay RR (eds) Development of the auditory system. Springer, New York, pp 315–413

  16. Carmignoto G, Vicini S (1992) Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258: 1007–1011

    PubMed  CAS  Google Scholar 

  17. Changeux JP, Courrege P, Danchin A (1973) A theory of the epigenesis of neuronal networks by selective stabilization of synapses. Proc Natl Acad Sci U S A 70: 2974–2978

    PubMed  CAS  Google Scholar 

  18. Changeux JP, Danchin A (1976) Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264: 705–712

    PubMed  CAS  Google Scholar 

  19. Chomsky N (1959) Review of BF Skinner’s verbal behavior. Language 35: 26–58

    Google Scholar 

  20. Conel JL (1939, 1967) The postnatal development of human cerebral cortex, vol I–VIII. Harvard University Press, Cambridge/MA

  21. Cragg BG (1975) The development of synapses in kitten visual cortex during visual deprivation. Exp Neurol 46: 445–451

    PubMed  CAS  Google Scholar 

  22. Cragg BG (1975) The development of synapses in the visual system of the cat. J Comp Neurol 160: 147–166

    PubMed  CAS  Google Scholar 

  23. Crair MC, Malenka RC (1995) A critical period for long-term potentiation at thalamocortical synapses. Nature 375: 325–328

    PubMed  CAS  Google Scholar 

  24. Cruttenden A (1970) A phonetic study of babbling. Br J Disord Commun 5: 110–117

    PubMed  CAS  Google Scholar 

  25. Curtiss S (1977) Genie: A psycholinguistic study of a modern-day „wild child“. Academic Press, New York

  26. Davis MH, Johnsrude IS (2007) Hearing speech sounds: Top-down influences on the interface between audition and speech perception. Hear Res 229: 132–147

    PubMed  Google Scholar 

  27. Dawson PW, Blamey PJ, Rowland LC et al. (1992) Cochlear implants in children, adolescents, and prelinguistically deafened adults: speech perception. J Speech Hear Res 35: 401–417

    PubMed  CAS  Google Scholar 

  28. DeCasper AJ, Fifer WP (1980) Of human bonding: newborns prefer their mothers‘ voices. Science 208: 1174–1176

    PubMed  CAS  Google Scholar 

  29. Dehaene-Lambertz G (2000) Cerebral specialization for speech and non-speech stimuli in infants. J Cogn Neurosci 12: 449–460

    PubMed  CAS  Google Scholar 

  30. Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L (2002) Functional neuroimaging of speech perception in infants. Science 298: 2013–2015

    PubMed  CAS  Google Scholar 

  31. Dodson HC, Mohuiddin A (2000) Response of spiral ganglion neurones to cochlear hair cell destruction in the guinea pig. J Neurocytol 29: 525–537

    PubMed  CAS  Google Scholar 

  32. Eggermont JJ (1991) Maturational aspects of periodicity coding in cat primary auditory cortex. Hear Res 57: 45–56

    PubMed  CAS  Google Scholar 

  33. Eggermont JJ (1996) Differential maturation rates for response parameters in cat primary auditory cortex. Aud Neurosci 2: 309–327

    Google Scholar 

  34. Eggermont JJ, Ponton CW, Don M, Waring MD, Kwong B (1997) Maturational delays in cortical evoked potentials in cochlear implant users. Acta Otolaryngol 117: 161–163

    PubMed  CAS  Google Scholar 

  35. Eisenberg LS, Shannon RV, Martinez AS, Wygonski J, Boothroyd A (2000) Speech recognition with reduced spectral cues as a function of age. J Acoust Soc Am 107: 2704–2710

    PubMed  CAS  Google Scholar 

  36. Elliott LL (1979) Performance of children aged 9 to 17 years on a test of speech intelligibility in noise using sentence material with controlled word predictability. J Acoust Soc Am 66: 651–653

    PubMed  CAS  Google Scholar 

  37. Elliott LL, Connors S, Kille E et al. (1979) Children’s understanding of monosyllabic nouns in quiet and in noise. J Acoust Soc Am 66: 12–21

    PubMed  CAS  Google Scholar 

  38. Finney EM, Fine I, Dobkins KR (2001) Visual stimuli activate auditory cortex in the deaf. Nat Neurosci 4: 1171–1173

    PubMed  CAS  Google Scholar 

  39. Fryauf-Bertschy H, Tyler RS, Kelsay DM, Gantz BJ, Woodworth GG (1997) Cochlear implant use by prelingually deafened children: the influences of age at implant and length of device use. J Speech Lang Hear Res 40: 183–199

    PubMed  CAS  Google Scholar 

  40. Gantz BJ, Woodworth GG, Knutson JF, Abbas PJ, Tyler RS (1993) Multivariate predictors of audiological success with multichannel cochlear implants. Ann Otol Rhinol Laryngol 102: 909–916

    PubMed  CAS  Google Scholar 

  41. Giedd JN (2004) Structural magnetic resonance imaging of the adolescent brain. Ann N Y Acad Sci 1021: 77–85

    PubMed  Google Scholar 

  42. Goldin-Meadow S (2003) The resilience of language. Psychology Press, New York Hove

  43. Goldin-Meadow S, Mylander C (1984) Gestural communication in deaf children: The effects and noneffects of parental input on early language development. Monogr Soc Res Child Dev 49: 1–151

    PubMed  CAS  Google Scholar 

  44. Goldin-Meadow S, Mylander C (1990) Beyond the input given – the childs role in the acquisition of language. Language 66: 323–355

    Google Scholar 

  45. Goldin-Meadow S, Mylander C (1998) Spontaneous sign systems created by deaf children in two cultures. Nature 391: 279–281

    PubMed  CAS  Google Scholar 

  46. Graham JM, Phelps PD, Michaels L (2000) Congenital malformations of the ear and cochlear implantation in children: review and temporal bone report of common cavity. J Laryngol Otol Suppl 25: 1–14

    PubMed  CAS  Google Scholar 

  47. Granier-Deferre C, Lecanuet JP, Cohen H, Busnel MC (1985) Feasibility of prenatal hearing test. Acta Otolaryngol Suppl 421: 93–101

    PubMed  CAS  Google Scholar 

  48. Heid S (1998) Morphologische Befunde am peripheren und zentralen auditorischen System der kongenital gehörlosen weißen Katze. JW Goethe University, Frankfurt am Main

  49. Heid S, Hartmann R, Klinke R (1998) A model for prelingual deafness, the congenitally deaf white cat - population statistics and degenerative changes. Hear Res 115: 101–112

    PubMed  CAS  Google Scholar 

  50. Heid S, Jahnsiebert TK, Klinke R, Hartmann R, Langner G (1997) Afferent projection patterns in the auditory brainstem in normal and congenitally deaf white cats. Hear Res 110: 191–199

    PubMed  CAS  Google Scholar 

  51. Hochstein S, Ahissar M (2002) View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36: 791–804

    PubMed  CAS  Google Scholar 

  52. Honig LS, Herrmann K, Shatz CJ (1996) Developmental changes revealed by immunohistochemical markers in human cerebral cortex. Cereb Cortex 6: 794–806

    PubMed  CAS  Google Scholar 

  53. Hsieh CY, Chen Y, Leslie FM, Metherate R (2002) Postnatal development of NR2A and NR2B mRNA expression in rat auditory cortex and thalamus. J Assoc Res Otolaryngol 3: 479–487

    PubMed  Google Scholar 

  54. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387: 167–178

    PubMed  CAS  Google Scholar 

  55. Jaffe BF (1977) Hearing loss in children. University Park Press, Baltimore London Tokyo

  56. Jusczyk PW (2002) Some critical developments in acquiring native language sound organization during the first year. Ann Otol Rhinol Laryngol Suppl 189: 11–15

    PubMed  Google Scholar 

  57. Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy. II: Patterns of myelination in autopsied infants. Neuropathol Exp Neurol 47: 217–234

    CAS  Google Scholar 

  58. Kisilevsky BS, Muir DW, Low JA (1992) Maturation of human fetal responses to vibroacoustic stimulation. Child Dev 63: 1497–1508

    PubMed  CAS  Google Scholar 

  59. Klinke R, Kral A, Heid S, Tillein J, Hartmann R (1999) Recruitment of the auditory cortex in congenitally deaf cats by long- term cochlear electrostimulation. Science 285: 1729–1733

    PubMed  CAS  Google Scholar 

  60. Kotak VC, Breithaupt AD, Sanes DH (2007) Developmental hearing loss eliminates long-term potentiation in the auditory cortex. Proc Natl Acad Sci U S A 104: 3550–3555

    PubMed  CAS  Google Scholar 

  61. Kral A (2007) Unimodal and crossmodal plasticity in the „deaf“ auditory cortex. Int J Audiol 46: 479–493

    PubMed  Google Scholar 

  62. Kral A, Eggermont JJ (2007) What’s to lose and what’s to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Res Rev 56: 259–269

    PubMed  Google Scholar 

  63. Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2000) Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cereb Cortex 10: 714–726

    PubMed  CAS  Google Scholar 

  64. Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2001) Delayed maturation and sensitive periods in the auditory cortex. Audiol Neurootol 6: 346–362

    PubMed  CAS  Google Scholar 

  65. Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2002) Hearing after congenital deafness: central auditory plasticity and sensory deprivation. Cereb Cortex 12: 797–807

    PubMed  CAS  Google Scholar 

  66. Kral A, Pallas SL (2009) Development of the auditory cortex. In: Schreiner CE, Winer JA (eds), The auditory cortex. Springer, New York (in press)

  67. Kral A, Schroder JH, Klinke R, Engel AK (2003) Absence of cross-modal reorganization in the primary auditory cortex of congenitally deaf cats. Exp Brain Res 153: 605–613

    PubMed  CAS  Google Scholar 

  68. Kral A, Tillein J, Heid S, Hartmann R, Klinke R (2005) Postnatal cortical development in congenital auditory deprivation. Cereb Cortex 15: 552–562

    PubMed  CAS  Google Scholar 

  69. Kral A, Tillein J, Heid S, Klinke R, Hartmann R (2006) Cochlear implants: cortical plasticity in congenital deprivation. Prog Brain Res 157: 283–313

    PubMed  Google Scholar 

  70. Krmpotic-Nemanic J, Kostovic I, Kelovic Z, Nemanic D, Mrzljak L (1983) Development of the human fetal auditory cortex: Growth of afferent fibres. Acta Anat (Basel) 116: 69–73

    Google Scholar 

  71. Krmpotic-Nemanic J, Kostovic I, Nemanic D, Kelovic Z (1979) The laminar organization of the prospective auditory cortex in the human fetus 11–13,5 weeks of gestation). Acta Otolaryngol 87: 241–246

    PubMed  CAS  Google Scholar 

  72. Kuhl PK (1993) Developmental speech perception: implications for models of language impairment. Ann N Y Acad Sci 682: 248–263

    PubMed  CAS  Google Scholar 

  73. Kuhl PK (2004) Early language acquisition: Cracking the speech code. Nat Rev Neurosci 5: 831–843

    PubMed  CAS  Google Scholar 

  74. Kuhl PK, Andruski JE, Chistovich IA et al. (1997) Cross-language analysis of phonetic units in language addressed to infants. Science 277: 684–686

    PubMed  CAS  Google Scholar 

  75. Larsen SA, Kirchhoff TM (1992) Anatomical evidence of synaptic plasticity in the cochlear nuclei of white-deaf cats. Exp Neurol 115: 151–157

    PubMed  CAS  Google Scholar 

  76. Leake PA, Hradek GT, Snyder RL (1999) Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. J Comp Neurol 412: 543–562

    PubMed  CAS  Google Scholar 

  77. Liegeois-Chauvel C, Musolino A, Badier JM, Marquis P, Chauvel P (1994) Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol 92: 204–214

    PubMed  CAS  Google Scholar 

  78. Locke JL (1997) A theory of neurolinguistic development. Brain Lang 58: 265–326

    PubMed  CAS  Google Scholar 

  79. Lomber SG, Malhotra S (2008) Double dissociation of ‚what‘ and ‚where‘ processing in auditory cortex. Nat Neurosci 11: 609–616

    PubMed  CAS  Google Scholar 

  80. LoTurco JJ, Blanton MG, Kriegstein AR (1991) Initial expression and endogenous activation of NMDA channels in early neocortical development. J Neurosci 11: 792–799

    PubMed  CAS  Google Scholar 

  81. Mair IWS (1973) Hereditary deafness in the white cat. Acta Otolaryngol (Stockh) Suppl 314: 1–53

    Google Scholar 

  82. Malhotra S, Hall AJ, Lomber SG (2004) Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. J Neurophysiol 92: 1625–1643

    PubMed  Google Scholar 

  83. Mehler J, Jusczyk P, Lambertz G et al. (1988) A precursor of language acquisition in young infants. Cognition 29: 143–178

    PubMed  CAS  Google Scholar 

  84. Miller MW (1988) Development of projection and local circuit neurons in neocortex. In: Peters A, Jones EG (eds), Cerebral Cortex, vol 7: Development and maturation of cerebral cortex. Plenum Press, New York, pp 133–175

  85. Moore CM, Vollmer M, Leake PA, Snyder RL, Rebscher SJ (2002) The effects of chronic intracochlear electrical stimulation on inferior colliculus spatial representation in adult deafened cats. Hear Res 164: 82–96

    PubMed  Google Scholar 

  86. Moore DR, Irvine DR (1979) The development of some peripheral and central auditory responses in the neonatal cat. Brain Res 163: 49–59

    PubMed  CAS  Google Scholar 

  87. Moore JK, Perazzo LM, Braun A (1995) Time course of axonal myelination in the human brainstem auditory pathway. Hear Res 87: 21–31

    PubMed  CAS  Google Scholar 

  88. Moore JK, Ponton CW, Eggermont JJ, Wu BJ, Huang JQ (1996) Perinatal maturation of the auditory brain stem response: changes in path length and conduction velocity. Ear Hear 17: 411–418

    PubMed  CAS  Google Scholar 

  89. Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9: 65–75

    PubMed  CAS  Google Scholar 

  90. Nishimura H, Hashikawa K, Doi K et al. (1999) Sign language ‚heard‘ in the auditory cortex. Nature 397: 116

    PubMed  CAS  Google Scholar 

  91. Oller DK, Eilers RE (1988) The role of audition in infant babbling. Child Dev 59: 441–449

    PubMed  CAS  Google Scholar 

  92. Oller DK, Eilers RE, Steffens ML, Lynch MP, Urbano R (1994) Speech-like vocalizations in infancy: an evaluation of potential risk factors. J Child Lang 21: 33–58

    PubMed  CAS  Google Scholar 

  93. Pallas SL (2006) Compensatory innervation in development and evolution. In: Striedter GF, Rubenstein JLR (eds) Vol 1: History of ideas, basic concepts and developmental mechanisms. Academic Press, Oxford, pp 153–168

  94. Paus T, Zijdenbos A, Worsley K et al. (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283: 1908–1911

    PubMed  CAS  Google Scholar 

  95. Pena M, Maki A, Kovacic D et al. (2003) Sounds and silence: An optical topography study of language recognition at birth. Proc Nat Acad Sci U S A 100: 11702–11705

    CAS  Google Scholar 

  96. Petitto LA, Zatorre RJ, Gauna K et al. (2000) Speech-like cerebral activity in profoundly deaf people processing signed languages: implications for the neural basis of human language. Proc Natl Acad Sci U S A 97: 13961–13966

    PubMed  CAS  Google Scholar 

  97. Pinker S (1996) Das Sprachinstinkt. Kindler, München

  98. Platon (1973) Hauptwerke, Alfred Kröner, Stuttgart

  99. Ponton CW, Don M, Eggermont JJ et al. (1996) Auditory system plasticity in children after long periods of complete deafness. Neuroreport 8: 61–65

    PubMed  CAS  Google Scholar 

  100. Ponton CW, Don M, Eggermont JJ, Waring MD, Masuda A (1996B Maturation of human cortical auditory function: differences between normal-hearing children and children with cochlear implants. Ear Hear 17: 430–437

    PubMed  CAS  Google Scholar 

  101. Ponton CW, Eggermont JJ (2001) Of kittens and kids: Altered cortical maturation following profound deafness and cochlear implant use. Audiol Neurootol 6: 363–380

    PubMed  CAS  Google Scholar 

  102. Ponton CW, Eggermont JJ, Kwong B, Don M (2000) Maturation of human central auditory system activity: Evidence from multi-channel evoked potentials. Clin Neurophysiol 111: 220–236

    PubMed  CAS  Google Scholar 

  103. Rees NS (1972) The role of babbling in the child’s acquisition of language. Br J Disord Commun 7: 17–23

    PubMed  CAS  Google Scholar 

  104. Rouiller EM, Simm GM, Villa AE, de Ribaupierre Y, de Ribaupierre F (1991) Auditory corticocortical interconnections in the cat: Evidence for parallel and hierarchical arrangement of the auditory cortical areas. Exp Brain Res 86: 483–505

    PubMed  CAS  Google Scholar 

  105. Ruben RJ (1997) A time frame of critical/sensitive periods of language development. Acta Otolaryngol 117: 202–205

    PubMed  CAS  Google Scholar 

  106. Ryugo DK, Kretzmer EA, Niparko JK (2005) Restoration of auditory nerve synapses in cats by cochlear implants. Science 310: 1490–1492

    PubMed  CAS  Google Scholar 

  107. Ryugo DK, Rosenbaum BT, Kim PJ, Niparko JK, Saada AA (1998) Single unit recordings in the auditory nerve of congenitally deaf white cats: Morphological correlates in the cochlea and cochlear nucleus. J Comp Neurol 397: 532–548

    PubMed  CAS  Google Scholar 

  108. Saada AA, Niparko JK, Ryugo DK (1996) Morphological changes in the cochlear nucleus of congenitally deaf white cats. Brain Res 736: 315–328

    PubMed  CAS  Google Scholar 

  109. Sanes DH, Friauf E (2000) Development and influence of inhibition in the lateral superior olivary nucleus. Hear Res 147: 46–58

    PubMed  CAS  Google Scholar 

  110. Sermasi E, Tropea D, Domenici L (1999) Long term depression is expressed during postnatal development in rat visual cortex: A role for visual experience. Brain Res Dev Brain Res 113: 61–65

    PubMed  CAS  Google Scholar 

  111. Sharma A, Dorman MF, Spahr AJ (2002) A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear Hear 23: 532–539

    PubMed  Google Scholar 

  112. Sharma A, Dorman M, Spahr A, Todd NW (2002) Early cochlear implantation in children allows normal development of central auditory pathways. Ann Otol Rhinol Laryngol Suppl 189: 38–41

    PubMed  Google Scholar 

  113. Sharma A, Dorman MF, Kral A (2005) The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear Res 203: 134–143

    PubMed  Google Scholar 

  114. Sharma A, Kraus N, McGee TJ, Nicol TG (1997) Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalogr Clin Neurophysiol 104: 540–545

    PubMed  CAS  Google Scholar 

  115. Shiff-Myers N (1993) Hearing children of deaf parents. In: Bishop D, Mogford K (eds) Language development in exceptional circumstances. Lawrence Erlbaum, Hove, pp 47–61

  116. Skuse DH (1993) Extreme deprivation in early childhood. In: Bishop D, Mogford K (eds) Language development in exceptional circumstances. Erlbaum, Hillsdale, pp 29–46

  117. Snow CE (1981) The uses of imitation. J Child Lang 8: 205–212

    PubMed  CAS  Google Scholar 

  118. Snow CE, Hoefnagel-Hohle M (1977) Age differences in the pronunciation of foreign sounds. Lang Speech 20: 357–365

    PubMed  CAS  Google Scholar 

  119. Sohmer H, Perez R, Sichel JY, Priner R, Freeman S (2001) The pathway enabling external sounds to reach and excite the fetal inner ear. Audiol Neurootol 6: 109–116

    PubMed  CAS  Google Scholar 

  120. Tong YC, Busby PA, Clark GM (1988) Perceptual studies on cochlear implant patients with early onset of profound hearing impairment prior to normal development of auditory, speech, and language skills. J Acoust Soc Am 84: 951–962

    PubMed  CAS  Google Scholar 

  121. Tyler R, Parkinson AJ, Fryauf-Bertchy H et al. (1997) Speech perception by prelingually deaf children and postlingually deaf adults with cochlear implant. Scand Audiol Suppl 46: 65–71

    PubMed  CAS  Google Scholar 

  122. Tyler RS, Moore BC (1992) Consonant recognition by some of the better cochlear-implant patients. J Acoust Soc Am 92: 3068–3077

    PubMed  CAS  Google Scholar 

  123. van Zundert B, Yoshii A, Constantine-Paton M (2004) Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci 27: 428–437

    Google Scholar 

  124. Warren RM (1970) Perceptual restoration of missing speech sounds. Science 167: 392–393

    PubMed  CAS  Google Scholar 

  125. Werker JF, Tees RC (1983) Developmental changes across childhood in the perception of non-native speech sounds. Can J Psychol 37: 278–286

    PubMed  CAS  Google Scholar 

  126. Werker JF, Tees RC (1984) Phonemic and phonetic factors in adult cross-language speech perception. J Acoust Soc Am 75: 1866–1878

    PubMed  CAS  Google Scholar 

  127. Willems PJ (2000) Genetic causes of hearing loss. N Engl J Med 342: 1101–1109

    PubMed  CAS  Google Scholar 

  128. Winfield DA (1981) The postnatal development of synapses in the visual cortex of the cat and the effects of eyelid closure. Brain Res 206: 166–171

    PubMed  CAS  Google Scholar 

  129. Winfield DA (1983) The postnatal development of synapses in the different laminae of the visual cortex in the normal kitten and in kittens with eyelid suture. Brain Res 285: 155–169

    PubMed  CAS  Google Scholar 

  130. Yakovlev PL, Lecour A-R (1967) The myelogenic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell Scientific Publications, Oxford, pp 3–70

  131. Zhang LI, Bao S, Merzenich MM (2001) Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat Neurosci 4: 1123–1130

    PubMed  CAS  Google Scholar 

  132. Zhang LI, Bao S, Merzenich MM (2002) Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proc Natl Acad Sci U S A 99: 2309–2314

    PubMed  CAS  Google Scholar 

Download references

Danksagung

Unterstützt von der Deutschen Forschungsgemeinschaft (DFG KR 3370/1-1) und den „National Institutes of Health“ (1 R03 DC006168).

Für weitere Quellen zur Entkopplungshypothese und Beispiele für Top-down-Effekte s. http://web.mac.com/akral.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kral, A. Frühe Hörerfahrung und sensible Entwicklungsphasen. HNO 57, 9–16 (2009). https://doi.org/10.1007/s00106-008-1877-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-008-1877-9

Schlüsselwörter

Keywords

Navigation