Skip to main content
Log in

Bioreaktoren in der Gewebekultur

Bioreactors in tissue culture

  • Im Fokus
  • Published:
HNO Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Darling EM, Athanasiou KA (2003) Articular cartilage bioreactors and bioprocesses. Tissue Eng 9: 9–26

    Article  PubMed  CAS  Google Scholar 

  2. Portner R, Nagel-Heyer S, Goepfert C et al. (2005) Bioreactor design for tissue engineering. J Biosci Bioeng 100: 235–245

    Article  PubMed  CAS  Google Scholar 

  3. Haisch A, Schultz O, Perka C et al. (1996) Tissue engineering of human cartilage tissue for reconstructive surgery using biocompatible resorbable fibrin gel and polymer carriers. HNO 44: 624–629

    Article  PubMed  CAS  Google Scholar 

  4. Haisch A, Wanjura F, Radke C et al. (2004) Immunomodulation of tissue-engineered transplants: in vivo bone generation from methylprednisolone-stimulated chondrocytes. Eur Arch Otorhinolaryngol 261: 216–224

    Article  PubMed  Google Scholar 

  5. Kaps C, Bramlage C, Smolian H et al. (2002) Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. Arthritis Rheum 46: 149–162

    Article  PubMed  CAS  Google Scholar 

  6. Haisch A, Marzahn U, Mobasheri A et al. (2006) Development and phenotypic characterization of a high density in vitro model of auricular chondrocytes with applications in reconstructive plastic surgery. Histol Histopathol 21: 467–476

    PubMed  CAS  Google Scholar 

  7. Yu X, Botchwey EA, Levine EM et al. (2004) Bioreactor-based hone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci USA l0l: 11203–11208

    Article  Google Scholar 

  8. Bueno EM, Bilgen B, Barabino GA (2005) Wavy-walled bioreactor Supports increased cell proliferation and matrix deposition in engineered cartilage constructs. Tissue Eng 11: 1699–1709

    Article  PubMed  CAS  Google Scholar 

  9. Freed LE, Vunjak GV, Drinker PA, Langer R (1988) A novel bioreactor based on suspended particles of agarose-immobilized species. ASAIO Trans 34: 732–738

    PubMed  CAS  Google Scholar 

  10. Freed LE, Vunjak-Novakovic G (1997) Microgravity tissue engineering. In Vitro Cell. Dev Biol Anim 33: 381–385

    Article  CAS  Google Scholar 

  11. Minuth WW, Strehl R, Schumacher K (2004) Tissue factory: conceptual design of a modular System for the in vitro generation of functional tissues. Tissue Eng 10: 285–294

    Article  PubMed  CAS  Google Scholar 

  12. Langer RS, Vacanti JP (1999) Tissue engineering: the challenges ahead. Sci Am 280: 86–89

    Article  PubMed  CAS  Google Scholar 

  13. Vacanti CA, Bonassar LJ (1999) An overview of tissue engineered bone. Clin Orthop Relat Res (Suppl) 367: S375–381

    Article  Google Scholar 

  14. Stevens MM, Marini W, Schaefer D et al. (2005) In vivo engineering of organs: the hone bioreactor. Proc Natl Acad Sci USA 102: 11450–11455

    Article  PubMed  CAS  Google Scholar 

  15. Vance J, Galley S, Liu DF, Donahue SW (2005) Mechanical stimulation of MC3T3 osteoblastic cells in a bone tissue-engineering bioreactor enhances prostaglandin E2 release. Tissue Eng 11: 1832–1839

    Article  PubMed  CAS  Google Scholar 

  16. Casser-Bette M, Murray AB, Closs EI et al. (1990) Bone formation by osteoblast-like cells in a three-dimensional cell culture. Calcif Tissue Int 46: 46–56

    Article  PubMed  CAS  Google Scholar 

  17. Ducheyne P, el-Ghannam A, Shapiro I (1994) Effect of bioactive glass templates on osteoblast proliferation and in vitro synthesis of bone-like tissue. J Cell Biochem 56: 162–167

    Article  PubMed  CAS  Google Scholar 

  18. El-Ghannam A, Ducheyne P, Shapiro IM (1997) Porous bioactive glass and hydroxyapatite ceramic affect bone cell function in vitro along different time lines. J Biomed Mater Res 36: 167–180

    Article  PubMed  CAS  Google Scholar 

  19. Ishaug SL, Crane GM, Miller MJ et al. (1997) Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 36: 17–28

    Article  PubMed  CAS  Google Scholar 

  20. Laurencin CI, Attawia MA, Elgendy HE, Herbert KM (1996) Tissue engineered bone-regeneration using degradable polymers: the formation of mineralized matrices. Bone (Suppl 1) 19: 93S–99S

  21. Eiselt P, Kim BS, Chacko B et al. (1998) Development of technologies aiding large-tissue engineering. Biotechnol Prog 14: 134–140

    Article  PubMed  CAS  Google Scholar 

  22. Granet C, Laroche N, Vico L et al. (1998) Rotating-wall vessels, promising bioreactors for osteoblastic cell culture: comparison with other 3D conditions. Med Biol Eng Comput 36: 513–519

    Article  PubMed  CAS  Google Scholar 

  23. Klement BJ, Spooner BS (1993) Utilization of microgravity bioreactors for differentiation of mammalian skeletal tissue. J Cell Biochem 51: 252–256

    Article  PubMed  CAS  Google Scholar 

  24. Molnar G, Schroedl NA, Gonda SR, Hartzell CR (1997) Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cell Dev Biol Anim 33: 386–391

    Article  PubMed  CAS  Google Scholar 

  25. Bancroft GN, Sikavitsas VI, van den Dolder J et al (2002) Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 99: 12600–12605

    Article  PubMed  CAS  Google Scholar 

  26. Sikavitsas VI, Bancroft GN, Mikos AG (2002) Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J Biomed Mater Res 62: 136–148

    Article  PubMed  CAS  Google Scholar 

  27. Goldstein AS, Juarez TM, Helmke CD et al. (2001) Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22: 1279–1288

    Article  PubMed  CAS  Google Scholar 

  28. Nollert MU, McIntire LV (1992) Convective mass transfer effects on the intracellular calcium response of endothelial cells. J Biomech Eng 114: 321–326

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Der Autor M. Bücheler ist dem Verfasser persönlich bekannt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Haisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haisch, A. Bioreaktoren in der Gewebekultur. HNO 56, 373–375 (2008). https://doi.org/10.1007/s00106-008-1736-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-008-1736-8

Navigation