Skip to main content
Log in

Vermehrung und Differenzierung humaner Nasenseptum-Osteoblasten

Ein neuartiges Perfusionskultursystem

Proliferation and differentiation of human osteoblasts from the nasal septum in a new perfusion culture system

  • Originalien
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Perfusionskultursysteme werden heute überwiegend für die Untersuchung zellphysiologischer Fragestellungen und für die Züchtung dreidimensionaler Gewebekonstrukte verwendet. In der Regel sind diese Systeme relativ teuer und ermöglichen keine kontinuierliche mikroskopische Kontrolle der wachsenden Zellen. Einfache und kostengünstige Perfusionskultursysteme stehen bisher nicht zur Verfügung.

Material und Methoden

Es wurde ein neuartiges Perfusionskultursystem entwickelt, dessen Module aus einer Halterung zum Einsatz unterschiedlicher Medienversorgungssysteme, Mikrodosierpumpen und laminar durchströmter Kulturkammern mit je 8 cm3 Kulturfläche bestehen. Die Perfusionskammern wurden mit humanen osteoblastären Zellen aus der Gewebekultur besiedelt (5000/cm2) und nach Adhärenz der Zellen über 10 Tage perfundiert (0,5 ml/min). Als Kontrollgruppe wurden osteoblastäre Zellen in baugleichen Kulturkammern ohne Mediumperfusion mitgeführt. Nach 10 Tagen wurden die Zellzahlen nach dem Coulterprinzip bestimmt. Als Differenzierungsmerkmal wurde die alkalische Phosphatase photometrisch gemessen.

Ergebnisse

In den Perfusionskulturen konnte in 10 Tagen die 3- bis 4fache Zellmenge im Vergleich zur Kontrollgruppe gezüchtet werden. Die Werte der alkalischen Phosphatase lagen gleich hoch bzw. nur gering niedriger, was auf eine erhaltene osteoblastäre Differenzierung der Zellen bei höherer Proliferation hinweist.

Fazit

Eine möglichst hohe Zahl in vitro vermehrter Zellen ist die Grundvoraussetzung für die klinische Anwendung des Tissue-Engineering. Das erprobte Perfusionskultursystem ermöglicht durch eine kontinuierliche Medienversorgung eine höhere Proliferationsrate osteoblastärer Zellen bei erhaltener Differenzierung. Durch die Verwendung handelsüblicher Petri-Schalen ist die permanente mikroskopische Kontrolle der Kulturen möglich.

Abstract

Background

Today, perfusion culture systems are mainly used to investigate cellular physiology and to cultivate three-dimensional tissue complexes. As a rule, these systems are relatively expensive and do not enable continuous microscopic monitoring of the growing cells. Simple and inexpensive perfusion culture systems have not been available up to now.

Methods

A novel perfusion culture system was developed in which the modular components consist of a mounting apparatus for inserting various media supply systems, microdispenser pumps, and laminar-flow culture chambers, each with a culture volume of 8 cm3. The perfusion chambers were inoculated with human osteoblast cells from the tissue culture (5,000/cm2) and were perfused for 10 days after adherence of the cells (0.5 ml/min). As a control group, osteoblast-like cells were cultured in identically constructed culture chambers without medium perfusion. After 10 days, the cell counts were determined in accordance with the Coulter principle. Alkaline phosphatase was measured photometrically as a characteristic for differentiation.

Results

Compared with the control group, three to four times the quantity of cells were produced within 10 days in the perfusion cultures. The alkaline phosphatase values were equally high or only slightly lower, indicating that osteoblast differentiation of the cells was maintained with a higher proliferation.

Conclusions

As large a number of in vitro proliferated cells as possible is a prerequisite for clinical application of tissue engineering. By continuously supplying medium, the tested perfusion culture system enables a higher rate of proliferation of osteoblast-like cells with maintenance of differentiation. Continuous microscopic monitoring of the cultures is possible using commercially available Petri dishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Bancroft GN, Sikavitsas VI, Dolder J van den et al. (2002) Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose dependant manner. Proc Natl Acad Sci U S A 99: 12600–12605

    Article  PubMed  CAS  Google Scholar 

  2. Bancroft GN, Sikavitsas VI, Mikos AG (2003) Design of a flow perfusion bioreactor system for bone tissue engineering applications. Tissue Eng 9: 549–554

    Article  PubMed  CAS  Google Scholar 

  3. Bücheler M (2002) Tissue Engineering in der Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie. Laryngorhinootologie (Suppl 1) 81: 61–80

  4. Bujia J, Rotter N, Minuth W et al. (1995) Züchtung menschlichen Knorpelgewebes in einer dreidimensionalen Perfusionskulturkammer: Charakterisierung der Kollagensynthese. Laryngorhinootologie 74: 559–563

    PubMed  CAS  Google Scholar 

  5. Burger EH, Klein-Nulend J (1999) Responses of bone cells to biomechanical forces in in vitro. Adv Dent Res 13: 93–98

    Article  PubMed  CAS  Google Scholar 

  6. Cartmell SH, Porter BD, Guldberg RE (2000) Design of a 3D perfused culture system to evaluate bone regeneration technologies. Tissue Eng 6: 665

    Google Scholar 

  7. Gomes ME, Sikavitsas VI, Behravesh E et al. (2003) Effect of flow perfusion on osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J Biomed Mater Res A 67: 87–95

    Article  PubMed  CAS  Google Scholar 

  8. Jacobs CR, Yellowley CE, Davis BR et al. (1998) Differential effect of steady versus oscillating flow on bone cells. J Biomech 31: 969–976

    Article  PubMed  CAS  Google Scholar 

  9. Kaysinger KK, Ramp WK (1998) Extracellular pH modulates the activity of cultured human osteoblasts. J Cell Biochem 68: 83–89

    Article  PubMed  CAS  Google Scholar 

  10. Minuth WW, Stöckl G, Kloth S, Dermietzel R (1992) Construction of an apparatus for perfusion cell cultures which enables in vitro experiments under organotypic conditions. Eur J Cell Biol 57: 132–137

    PubMed  CAS  Google Scholar 

  11. Minuth WW, Schumacher K, Strehl R, Kloth S (2000) Physiological and cell biological aspects of perfusion culture technique employed to generate differentiated tissues for long term biomaterial testing and tissue engineering. J Biomater Sci Polym Ed 11: 495–522

    Article  PubMed  CAS  Google Scholar 

  12. Minuth WW, Strehl R, Schumacher K (2002) Von der Zellkultur zum Tissue Engineering. Pabst Science Publishers, Lengerich S 93, 102, 152

  13. Minuth WW, Strehl R, Schumacher K (2004) Tissue factory: Conceptual design of a modular system for the in vitro generation of functional tissue. Tissue Eng 10: 285–294

    Article  PubMed  CAS  Google Scholar 

  14. Porter B, Zauel R, Stockmann H et al. (2005) 3-D computional modeling of media flow through scaffolds in a perfusion bioreactor. J Biomech 38: 543–549

    Article  PubMed  Google Scholar 

  15. Prewett TL, Goodwin TJ, Spaulding GF (1993) Three-dimensional modeling of T-24 human bladder carcinoma cell line: A new simulated microgravity culture system. J Tiss Cult Meth 59: 9–36

    Google Scholar 

  16. Rotter N, Haisch A, Bücheler M (2005) Cartilage and bone tissue engineering for reconstructive head and neck surgery. Eur Arch Otorhinolaryngol 262: 539–545

    Article  PubMed  Google Scholar 

  17. Schwarz RP, Goodwin TJ, Wolf DA (1992) Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravitiy. J Tiss Cult Meth 14: 51–58

    Article  CAS  Google Scholar 

  18. Sittinger M, Schultz O, Keyszer G et al. (1997) Artificial tissue in perfusion culture. Int J Artif Organs 20: 57–62

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bücheler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bücheler, M., Bücheler, BM., Hagenau, K. et al. Vermehrung und Differenzierung humaner Nasenseptum-Osteoblasten . HNO 56, 301–305 (2008). https://doi.org/10.1007/s00106-007-1653-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-007-1653-2

Schlüsselwörter

Keywords

Navigation