Skip to main content
Log in

Künstliche Intelligenz und Smartphone-Programm-Applikationen (Apps)

Bedeutung für die dermatologische Praxis

Artificial intelligence and smartphone program applications (Apps)

Relevance for dermatological practice

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Vorteile der künstlichen Intelligenz (KI)

Durch einen verantwortungsvollen, sicheren und erfolgreichen Einsatz der künstlichen Intelligenz (KI) im dermato-onkologischen Bereich können mögliche Vorteile entstehen: (1) die ärztlich-medizinische Arbeit kann sich auf Hautkrebspatienten fokussieren, (2) Patienten können rascher und effizienter versorgt werden bei zunehmender Hautkrebsinzidenz und parallel abnehmenden Zahlen beruflich aktiver Hautarzte, und (3) Anwender können von den KI-Ergebnissen lernen.

Potenzielle Nachteile und Gefahren des KI-Einsatzes

(1) Ein mangelndes Vertrauensverhältnis bei fehlendem Patienten-Arzt-Kontakt kann sich entwickeln, (2) ein zusätzlicher zeitlicher Aufwand kann durch die zeitnahe ärztliche Kontrolle von der KI als benigne eingestuften Hautläsionen entstehen, (3) ausreichende ärztliche Erfahrungen zum Erkennen und korrigieren fehlerhafter KI-Entscheidungen können fehlen, und (4) bei fehlerhafter KI-Entscheidung ist eine erneute Kontaktaufnahme zum Patienten zur zeitnahen Vorstellung notwendig. Ungeklärt sind bisher bei der KI-Anwendung die medizinisch-rechtliche Situation sowie die finanzielle Vergütung. Apps mit KI erbringen auf Basis von klinischen Bildern von Hauttumoren aktuell keine ausreichende diagnostische Hilfe.

Voraussetzungen und möglicher Nutzen von Smartphone-Programm-Applikationen

Smartphone-Programm-Applikationen (Apps) können verantwortungsvoll erfolgreich eingesetzt werden, wenn die Bildqualität gut ist, anamnestische Angaben unkompliziert eingegeben werden können, die Bild- und Befundübermittlung gesichert ist und medizinrechtliche sowie finanzielle Fragen geklärt sind. Apps können als krankheitsspezifisches Informationsmaterial eingesetzt werden und in der Teledermatologie die Patientenversorgung optimieren.

Abstract

Advantages of artificial intelligence (AI)

With responsible, safe and successful use of artificial intelligence (AI), possible advantages in the field of dermato-oncology include the following: (1) medical work can focus on skin cancer patients, (2) patients can be more quickly and effectively treated despite the increasing incidence of skin cancer and the decreasing number of actively working dermatologists and (3) users can learn from the AI results.

Potential disadvantages and risks of AI use

(1) Lack of mutual trust can develop due to the decreased patient–physician contact, (2) additional time effort will be necessary to promptly evaluate the AI-classified benign lesions, (3) lack of adequate medical experience to recognize misclassified AI decisions and (4) recontacting a patient in due time in the case of incorrect AI classifications. Still problematic in the use of AI are the medicolegal situation and remuneration. Apps using AI currently cannot provide sufficient assistance based on clinical images of skin cancer.

Requirements and possible use of smartphone program applications

Smartphone program applications (apps) can be implemented responsibly when the image quality is good, the patient’s history can be entered easily, transmission of the image and results are assured and medicolegal aspects as well as remuneration are clarified. Apps can be used for disease-specific information material and can optimize patient care by using teledermatology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Wikipedia (2020) Artificial intelligence. https://en.wikipedia.org/wiki/Artificial_intelligence. Zugegriffen: 13. Apr. 2020

  2. Wallis C (2019) How artificial intelligence will change medicine. Nature 576(7787):48

    Google Scholar 

  3. Lallas A, Argenziano G (2018) Artificial intelligence and melanoma diagnosis: ignoring human nature may lead to false predictions. Dermatol Pract Concept 8(4):249–251

    PubMed  PubMed Central  Google Scholar 

  4. Navarrete-Dechent C, Dusza SW, Liopyris K, Marghoob AA, Halpern AC, Marchetti MA (2018) Automated dermatological diagnosis: hype or reality? J Invest Dermatol 138(10):2277–2279

    CAS  PubMed  Google Scholar 

  5. Tschandl P (2019) Problems and potentials of automated object detection for skin cancer recognition. JAMA Dermatol. https://doi.org/10.1001/jamadermatol.2019.3360

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wikipedia (2020) Artificial intelligence in healthcare. https://en.wikipedia.org/wiki/Artificial_intelligence_in_healthcare. Zugegriffen: 13. Apr. 2020

  7. Wikipedia (2020) Computer-aided diagnosis. https://en.wikipedia.org/wiki/Computer-aided_diagnosis. Zugegriffen: 13. Apr. 2020

  8. Binder M, Steiner A, Schwarz M et al (1994) Application of an artificial neural network in epiluminescence microscopy pattern analysis of pigmented skin lesions: a pilot study. Br J Dermatol 130:460–465

    CAS  PubMed  Google Scholar 

  9. Ercal F, Chawla A, Stoecker WV, Lee HC, Moss RH (1994) Neural network diagnosis of malignant melanoma from color images. IEEE Trans Biomed Eng 41(9):837–845

    CAS  PubMed  Google Scholar 

  10. Dreiseitl S, Binder M, Hable K, Kittler H (2009) Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial. Melanoma Res 19(3):180–184

    PubMed  Google Scholar 

  11. Dick V, Sinz C, Mittlböck M, Kittler H, Tschandl P (2019) Accuracy of computer-aided diagnosis of melanoma: a meta-analysis. JAMA Dermatol. https://doi.org/10.1001/jamadermatol.2019.1375

    Article  PubMed  PubMed Central  Google Scholar 

  12. Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118

    CAS  Google Scholar 

  13. Brinker TJ, Hekler A, Utikal JS et al (2018) Skin cancer classification using convolutional neural networks: systematic review. J Med Internet Res 20(10):e11936

    PubMed  PubMed Central  Google Scholar 

  14. Haenssle HA, Fink C, Schneiderbauer R et al (2018) Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 29:1836–1842

    CAS  PubMed  Google Scholar 

  15. Narla A, Kuprel B, Sarin K et al (2018) Automated classification of skin lesions: from pixels to practice. J Invest Dermatol 138:2108–2110

    CAS  PubMed  Google Scholar 

  16. Brinker TJ, Hekler A, Enk AH et al (2019) Deep neural networks are superior to dermatologists in melanoma image classification. Eur J Cancer 119:11–17

    PubMed  Google Scholar 

  17. Brinker TJ, Hekler A, Enk AH et al (2019) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur J Cancer 113:47–54

    PubMed  Google Scholar 

  18. Fink C, Blum A, Buhl T et al (2019) Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined nevi and melanomas. J Eur Acad Dermatol Venereol. https://doi.org/10.1111/jdv.16165

    Article  Google Scholar 

  19. Tschandl P, Rosendahl C, Akay BN et al (2019) Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks. JAMA Dermatol 155:58–65

    PubMed  Google Scholar 

  20. Tschandl P, Codella N, Akay BN et al (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol 20:938–947

    PubMed  Google Scholar 

  21. Winkler JK, Sies K, Fink C et al (2020) Melanoma recognition by a deep learning convolutional neural network—Performance in different melanoma subtypes and localisations. Eur J Cancer 127:21–29

    PubMed  Google Scholar 

  22. Haenssle HA, Fink C, Toberer F et al (2020) Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Ann Oncol 31(1):137–143

    CAS  PubMed  Google Scholar 

  23. Han SS, Moon IJ, Lim W et al (2020) Keratinocytic skin cancer detection on the face using region-based convolutional neural network. JAMA Dermatol 156(1):29–37

    Google Scholar 

  24. Tschandl P, Argenziano G, Razmara M, Yap J (2019) Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features. Br J Dermatol 181(1):155–165

    CAS  PubMed  Google Scholar 

  25. Li Y, Esteva A, Kuprel B, Novoa R, Ko J, Thrun S (2016) Skin cancer detection and tracking using data synthesis and deep learning (arXiv:1612.01074)

    Google Scholar 

  26. Blum A, Hofmann-Wellenhof R, Luedtke H et al (2004) Value of the clinical history for different users of dermoscopy compared with results of digital analysis. J Eur Acad Dermatol Venereol 18:665–669

    CAS  PubMed  Google Scholar 

  27. Tschandl P, Rosendahl C, Kittler H (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5:180161

    PubMed  PubMed Central  Google Scholar 

  28. Marchetti MA, Liopyris K, Dusza SW et al (2020) Computer algorithms show potential for improving dermatologists’ accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017. J Am Acad Dermatol 82(3):622–627

    PubMed  Google Scholar 

  29. Winkler JK, Fink C, Toberer F et al (2019) Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatol. https://doi.org/10.1001/jamadermatol.2019.1735

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shrivastava VK, Londhe ND, Sonawane RS, Suri JS (2016) Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind. Comput Methods Programs Biomed 126:98–109

    PubMed  Google Scholar 

  31. Han SS, Park GH, Lim W, Kim MS, Na JI, Park I, Chang SE (2018) Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: automatic construction of onychomycosis datasets by region-based convolutional deep neural network. PLoS ONE 13(1):e191493

    PubMed  PubMed Central  Google Scholar 

  32. Melina A, Dinh NN, Tafuri B et al (2018) Artificial intelligence for the objective evaluation of acne investigator global assessment. J Drugs Dermatol 17(9):1006–1009

    PubMed  Google Scholar 

  33. Bobrova M, Taranik M, Kopanitsa G (2019) Using neural networks for diagnosing in dermatology. Stud Health Technol Inform 261:211–216

    PubMed  Google Scholar 

  34. Li CX, Shen CB, Xue K et al (2019) Artificial intelligence in dermatology: past, present, and future. Chin Med J 132(17):2017–2020

    PubMed  PubMed Central  Google Scholar 

  35. Schlessinger DI, Chhor G, Gevaert O, Swetter SM, Ko J, Novoa RA (2019) Artificial intelligence and dermatology: opportunities, challenges, and future directions. Semin Cutan Med Surg 38(1):E31–37

    PubMed  Google Scholar 

  36. Seité S, Khammari A, Benzaquen M, Moyal D, Dréno B (2019) Development and accuracy of an artificial intelligence algorithm for acne grading from smartphone photographs. Exp Dermatol 28(11):1252–1257

    PubMed  PubMed Central  Google Scholar 

  37. Hogarty DT, Su JC, Phan K et al (2020) Artificial intelligence in dermatology—Where we are and the way to the future: a review. Am J Clin Dermatol 21(1):41–47

    PubMed  Google Scholar 

  38. Anonymous (2020) Checkliste für Gesundheits-Apps. Qualität, Nutzen, Transparenz und Datenschutz weisen große Unterschiede auf. Arztebl Baden Wurtt 04:199

    Google Scholar 

  39. bitkom (2019) Digital health. https://www.bitkom.org/sites/default/files/2019-05/190508_bitkom-pressekonferenz_e-health_prasentation.pdf. Zugegriffen: 13. Apr. 2020

  40. Börve A, Terstappen K, Sandberg C, Paoli J (2013) Mobile teledermoscopy—There’s an app for that! Dermatol Pract Concept. https://doi.org/10.5826/dpc.0302a05

    Article  PubMed  PubMed Central  Google Scholar 

  41. Augustin M, Wimmer J, Biedermann T, Blaga R, Dierks C, Djamei V et al (2018) Praxis der Teledermatologie. J Dtsch Dermatol Ges 16(Suppl 5):6–57

    PubMed  Google Scholar 

  42. Dahlén Gyllencreutz J, Johansson Backman E, Terstappen K, Paoli J (2018) Teledermoscopy images acquired in primary health care and hospital settings—A comparative study of image quality. J Eur Acad Dermatol Venereol 32(6):1038–1043

    PubMed  Google Scholar 

  43. Freeman EE, Semeere A, Osman H et al (2018) Smartphone confocal microscopy for imaging cellular structures in human skin in vivo. Biomed Opt Express 9(4):1906–1915

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Alves J, Moreira D, Alves P, Rosado L, Vasconcelos MJM (2019) Automatic focus assessment on dermoscopic images acquired with smartphones. Sensors (Basel) 19(22):4957

    Google Scholar 

  45. Blum A, Haase S, Barlinn S et al (2020) Erfolgreiche regionale tele-dermatologische und tele-dermatoskopische Triage-Vernetzung zwischen niedergelassen Hausärzten und Hautärzten. Hautarzt. https://doi.org/10.1007/s00105-020-04584-5

    Article  PubMed  Google Scholar 

  46. Marek AJ, Chu EY, Ming ME, Khan ZA, Kovarik CL (2018) Piloting the use of smartphones, reminders, and accountability partners to promote skin self-examinations in patients with total body photography: a randomized controlled trial. Am J Clin Dermatol 19(5):779–785

    PubMed  PubMed Central  Google Scholar 

  47. Verzantvoort NCM, Teunis T, Verheij TJM, van der Velden AW (2018) Self-triage for acute primary care via a smartphone application: practical, safe and efficient? PLoS ONE 13(6):e199284

    PubMed  PubMed Central  Google Scholar 

  48. Petrie T, Samatham R, Goodyear SM, Webster DE, Leachman SA (2019) MoleMapper: an application for crowdsourcing mole images to advance melanoma early-detection research. Semin Cutan Med Surg 38(1):E49–E56

    PubMed  Google Scholar 

  49. Walter FM, Pannebakker MM, Barclay ME et al (2020) Effect of a skin self-monitoring smartphone application on time to physician consultation among patients with possible melanoma: a phase 2 randomized clinical trial. JAMA Netw Open 3(2):e200001

    PubMed  PubMed Central  Google Scholar 

  50. Nair HKR (2018) Increasing productivity with smartphone digital imagery wound measurements and analysis. J Wound Care 27(Sup9a):S12–S19

    PubMed  Google Scholar 

  51. Safdari R, Firoz A, Masoorian H (2017) Identifying training and informational components to develop a psoriasis self-management application. Med J Islam Repub Iran 1(31):67

    Google Scholar 

  52. Lacy FA, Coman GC, Holliday AC, Kolodney MS (2018) Assessment of smartphone application for teaching intuitive visual diagnosis of melanoma. JAMA Dermatol 154(6):730–731

    PubMed  PubMed Central  Google Scholar 

  53. van Galen LS, Xu X, Koh MJA, Thng S, Car J (2020) Eczema apps conformance with clinical guidelines: a systematic assessment of functions, tools and content. Br J Dermatol 182(2):444–453

    PubMed  Google Scholar 

  54. Chuchu N, Takwoingi Y, Dinnes J et al (2018) Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma. Cochrane Database Syst Rev 4(12):CD13192

    Google Scholar 

  55. Börve A, Dahlén Gyllencreutz J et al (2015) Smartphone teledermoscopy referrals: a novel process for improved triage of skin cancer patients. Acta Derm Venereol 95(2):186–190

    PubMed  Google Scholar 

  56. Nami N, Massone C, Rubegni P, Cevenini G, Fimiani M, Hofmann-Wellenhof R (2015) Concordance and time estimation of store-and-forward mobile teledermatology compared to classical face-to-face consultation. Acta Derm Venereol 95(1):35–39

    PubMed  Google Scholar 

  57. Vestergaard T, Prasad SC, Schuster A, Laurinaviciene R, Andersen MK, Bygum A (2020) Diagnostic accuracy and interobserver concordance: teledermoscopy of 600 suspicious skin lesions in Southern Denmark. J Eur Acad Dermatol Venereol. https://doi.org/10.1111/jdv.16275

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gilling S, Mortz CG, Vestergaard T (2020) Patient satisfaction and expectations regarding mobile teledermoscopy in general practice for diagnosis of non-melanoma skin cancer and malignant melanoma. Acta Derm Venereol. https://doi.org/10.2340/00015555-3459

    Article  PubMed  Google Scholar 

  59. Gracey LE, Zan S, Gracz J (2018) Use of user-centered design to create a smartphone application for patient-reported outcomes in atopic dermatitis. NPJ Digit Med 13(1):33

    Google Scholar 

  60. Devrim İ, Düzgöl M, Kara A et al (2019) Reliability and accuracy of smartphones for paediatric infectious disease consultations for children with rash in the paediatric emergency department. BMC Pediatr 19(1):40

    PubMed  PubMed Central  Google Scholar 

  61. Ming A, Walter I, Alhajjar A, Leuckert M, Mertens PR (2019) Study protocol for a randomized controlled trial to test for preventive effects of diabetic foot ulceration by telemedicine that includes sensor-equipped insoles combined with photo documentation. Trials 20(1):521

    PubMed  PubMed Central  Google Scholar 

  62. Blum A, Giacomel J (2015) “Tape dermatoscopy”: constructing a low-cost dermatoscope using a mobile phone, immersion fluid and transparent adhesive tape. Dermatol Pract Concept 5(2):87–93

    PubMed  PubMed Central  Google Scholar 

  63. Blum A, Oberhoff M, Oberhoff A (2019) Diskrete Nagelpigmentierung als ein Hinweis für ein frühes Melanom. Dtsch Arztebl Int 116:335

    PubMed  PubMed Central  Google Scholar 

  64. Brinker TJ, Hekler A, von Kalle C et al (2018) Teledermatology: comparison of store-and-forward versus live interactive video conferencing. J Med Internet Res 20(10):e11871

    PubMed  PubMed Central  Google Scholar 

  65. Finnane A, Soyer HP (2015) Smartphone diagnosis of skin cancer: there’s not yet an app for that. Br J Dermatol 172(6):1474–1475

    CAS  PubMed  Google Scholar 

  66. Ngoo A, Finnane A, McMeniman E, Tan JM, Janda M, Soyer HP (2018) Efficacy of smartphone applications in high-risk pigmented lesions. Australas J Dermatol 59(3):e175–e182

    PubMed  Google Scholar 

  67. Chung Y, van der Sande AAJ, de Roos KP et al (2020) Poor agreement between the automated risk assessment of a smartphone application for skin cancer detection and the rating by dermatologists. J Eur Acad Dermatol Venereol 34(2):274–278

    CAS  PubMed  Google Scholar 

  68. Freeman K, Dinnes J, Chuchu N et al (2020) Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies. BMJ 368:m127

    PubMed  PubMed Central  Google Scholar 

  69. Udrea A, Mitra GD, Costea D et al (2020) Accuracy of a smartphone application for triage of skin lesions based on machine learning algorithms. J Eur Acad Dermatol Venereol 34(3):648–655

    CAS  PubMed  Google Scholar 

  70. Acharya P, Mathur M (2020) Smartphone applications for the triage of skin lesions using machine learning: time to integrate the clinical information? J Eur Acad Dermatol Venereol. https://doi.org/10.1111/jdv.16371

    Article  PubMed  Google Scholar 

  71. Errichetti E, Zalaudek I, Kittler H et al (2020) Standardization of dermoscopic terminology and basic dermoscopic parameters to evaluate in general dermatology (non-neoplastic dermatoses): an expert consensus on behalf of the International Dermoscopy Society. Br J Dermatol 182:454–467

    CAS  PubMed  Google Scholar 

  72. Nwko-Mohamadi M, Masenga JE, Mavura D et al (2019) Dermoscpic features of psoriasis, lichen planus and pityriasis rosea in patients with skin types IV and darker attending the regional dermatology training centre of Nothern Tanzania. Dermatol Pract Concept 9(1):44–51

    Google Scholar 

  73. Deeks JJ, Dinnes J, Williams HC (2020) Sensitivity and specificity of skinvision are likely to have been overestimated. J Eur Acad Dermatol Venereol. https://doi.org/10.1111/jdv.16371

    Article  PubMed  Google Scholar 

  74. Panda N, Solsky I, Huang EJ et al (2019) Using Smartphones to capture novel recovery metrics after cancer surgery. JAMA Surg 28:1–7

    Google Scholar 

  75. Ruiz AJ, LaRochelle EPM, Gunn JR et al (2019) Smartphone fluorescence imager for quantitative dosimetry of protoporphyrin-IX-based photodynamic therapy in skin. J Biomed Opt 25(6):1–13

    PubMed  Google Scholar 

  76. DaCunha M, Habashi-Daniel A, Hanson C, Nichols E, Fraga GR (2020) A smartphone application to improve the precision of biopsy site identification: a proof-of-concept study. Health Informatics J. https://doi.org/10.1177/1460458220910341

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Blum M.Sc. DermPrevOncol.

Ethics declarations

Interessenkonflikt

A. Blum erhielt Vortragshonorare und Reisekostenerstattungen von Almirall Hermal GmbH, Dermatologische Fortbildungsgesellschaft (DERFO), Heine Optotechnik GmbH, HealthCert, JuDerm im BVDD, FotoFinder Systems GmbH, La Roche Posay und MELAsciences Incorporation. H. Haenssle erhielt Honorare und Reisekostenerstattungen von Jenlab GmbH, Heine Optotechnik GmbH, Scibase AB, FotoFinder Systems GmbH, Magnosco GmbH und MELAsciences Incorporation. C. Fink erhielt Vortragshonorare und Reisekostenerstattungen von Almirall Hermal GmbH und Magnosco GmbH. R. Hofmann-Wellenhof ist Gründer und Teilhaber der teledermatologischen Firma e‑derm-consult GesmbH und erhielt Vortraghonorare von Fotofinder GesmbH. I. Zalaudek erhielt Referentenhonorare oder Kostenerstattung als passiver Teilnehmer: Honorar: Novartis Oncology and Immunology, Sanofi Genzyme Oncology, Sun Pharma. Kostenerstattung: Pierre Fabre, Roche Oncology. – Bezahlter Berater/interner Schulungsreferent/Gehaltsempfänger o. Ä.: Berater: Heine Optotechnik GmbH, FotoFinder Systems GmbH, Novartis Oncology, Sanofi Genzyme Oncology. H. Kittler erhielt Referentenhonorare von Almirall Hermal GmbH, Eli Lilly, La Roche Posay und Pelpharma und Unterstützung über Bereitstellung von Hard- oder Software von Derma Medical, Heine Optotechnik GmbH, Fotofinder Systems GmbH und 3Gen. P. Tschandl hat von MetaOptima Technology Inc. 2017 eine einjährige Post-Doc-Forschungsfinanzierung erhalten. S. Bosch gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Aufgrund der besseren Lesbarkeit wurde auf eine genderkonforme Schreibweise verzichtet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blum, A., Bosch, S., Haenssle, H.A. et al. Künstliche Intelligenz und Smartphone-Programm-Applikationen (Apps). Hautarzt 71, 691–698 (2020). https://doi.org/10.1007/s00105-020-04658-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-020-04658-4

Schlüsselwörter

Keywords

Navigation