Skip to main content
Log in

Rolle des Mikrobioms bei chronischen Wunden

Role of the microbiome in chronic wounds

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Das Mikrobiom als Gesamtheit mikrobieller Lebensformen in definierten Körperbereichen hat große Bedeutung in der Regulation wichtiger Funktionen des Makroorganismus.

Fragestellung

Welche Bedeutung hat das Wundmikrobiom für die Behandlung chronischer Wunden? Welche Wechselwirkungen bestehen zu anderen Mikrobiomen, und welche Schlussfolgerungen ergeben sich daraus für das Wundmanagement?

Material und Methoden

Abstriche oder Débridementproben aus Wunden werden kultur- bzw. genbasiert auf mikrobielle Erreger untersucht. Aus den genetischen Ergebnissen ergibt sich das Wundmikrobiom. Die Erreger werden nach Art und proportionalem Vorkommen bewertet und verschiedenen Faktoren wie Lokalisation und Art der Wunde, Erkrankung und Nebendiagnosen zugeordnet.

Ergebnisse

Im Wundmikrobiom finden sich erheblich mehr Keimspezies und -mengen im Vergleich zu konventionellen mikrobiologischen Nachweismethoden. Das Wundmikrobiom steht in direkter Beziehung zum Hautmikrobiom und zeigt eine komplexe und zu verschiedenen Untersuchungszeiten unterschiedliche Zusammensetzung, außerdem inter- und intraindividuelle Unterschiede. Bei Wunden von diabetischen Patienten zeigen sich krankheitsspezifische Veränderungen, z. B. dominieren Staphylokokkenspezies, bei Nichtdiabetikern dagegen Streptokokken.

Schlussfolgerungen

Die Analyse des Wundmikrobioms befindet sich im Anfangsstadium. Es zeigt sich bereits, dass es bei hämodynamischen Störungen krankheitsspezifische Beziehungen zum Wundmikrobiom gibt, die auch Hinweise auf den Verlauf geben können. Die aus dem Hautmikrobiom bekannten Phänomene mit Auswirkungen auf Pathogene dürften auch in der Wunde wirksam werden. Hier zeigen sich Wege moderner antiinfektiver Behandlungsoptionen wie der Besiedlungsmodulation jenseits der konventionellen antimikrobiellen Chemotherapie auf.

Abstract

Background

The microbiome, collective microbial life in defined areas of the body, is of great importance.

Objective

What is the significance of the wound microbiome in the treatment of chronic wounds? Which interactions exist with other microbiomes and which conclusions can be drawn for wound management?

Materials and methods

Swabs or debridement samples from wounds were analysed for microbial growth by culture or gene-based techniques. The genetic results are used to determine the wound microbiome. The pathogens were evaluated according to proportion of different species and related to different factors like type and location of wound, disease and underlying illnesses and to define the wound microbiome.

Results

In comparison with conventional microbiological detection methods the wound microbiome comprises many more types and quantities of species. The wound microbiome is related to skin microbiome showing complex and time-dependent composition, as well as inter- and intraindividual differences. Diabetic wounds exhibit disease-related changes, e.g. staphylococcal species dominate whereas streptococcal species dominate in nondiabetic wounds.

Conclusions

The analysis of wound microbiome is still at an early stage; however it has already been shown that in hemodynamic disorders there are disease-specific relationships with the wound microbiome, which can also provide clues about the course of the disease. Phenomena from the skin microbiome should also be effective in wounds. In this context modern antimicrobial treatment options beyond conventional chemotherapy like colonization modulation become possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Alekseyenko AV, Perez-Perez GI, De Souza A, Strober B, Gao Z, Bihan M, Li K, Methe BA, Blaser MJ (2013) Community differentiation of the cutaneous microbiota in psoriasis. Microbiome 1:31. https://doi.org/10.1186/2049-2618-1-31

    Article  PubMed  PubMed Central  Google Scholar 

  2. Backhed F (2010) The normal gut microbiota in health and disease. Clin Exp Immunol 160(1):80–84

    Article  CAS  Google Scholar 

  3. Behm B, Schreml S, Landthaler M, Babilas P (2012) Skin signs in diabetes mellitus. J Eur Acad Dermatol Venereol 26:1203–1211. https://doi.org/10.1111/j.1468-3083.2012.04475.x

    Article  CAS  PubMed  Google Scholar 

  4. Belkaid Y, Tamoutounour S (2016) The influence of skin microorganisms on cutaneous immunity. Nat Rev Immunol 16:353–366

    Article  CAS  Google Scholar 

  5. Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M et al (2016) Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med 22(5):516–523. https://doi.org/10.1038/nm.4068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bomar L, Brugger SD, Yost BH, Davies SS, Lemon KP (2016) Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. MBio 7:e1725–1715. https://doi.org/10.1128/mBio.01725-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown JM, Hazen SL (2018) Microbial modulation of cardiovascular disease. Nat Rev Microbiol 16(3):171–181. https://doi.org/10.1038/nrmicro.2017.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Canesso MC, Vieira AT, Castro TB, Schirmer BG, Cisalpino D, Martins FS et al (2014) Skin wound healing is accelerated and scarless in the absence of commensal microbiota. J Immunol 93(10):5171–5180. https://doi.org/10.4049/jimmunol.1400625

    Article  CAS  Google Scholar 

  9. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  10. Christensen GJM, Scholz CFP, Enghild J, Rohde H, Kilian M, Thürmer A et al (2016) Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genomics 17:152

    Article  Google Scholar 

  11. Cogen AL, Yamasaki K, Muto J, Sanchez KM, Crotty AL, Tanios J, Lai Y, Kim JE, Nizet V, Gallo RL (2010) A Staphylococcus epidermidis antimicrobial delta-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus. PLoS ONE 5:e8557. https://doi.org/10.1371/journal.pone.0008557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697

    Article  CAS  Google Scholar 

  13. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K et al (2006) Greengenes, a chimera checked 16S rRNA gene database and work bench compatible with ARB. Applied and Environmental Chronic wound microbiome and topical antimicrobials. PLoS ONE 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  Google Scholar 

  14. Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E, Rhoads D (2008) Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS ONE 3(2008):e3326. https://doi.org/10.1371/journal.pone.0003326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ellebrecht CT, Srinivas G, Bieber K, Banczyk D, Kalies K, Kunzel S, Hammers CM, Baines JF, Zillikens D, Ludwig RJ, Westermann J (2016) Skin microbiota-associated inflammation precedes autoantibody induced tissue damage in experimental epidermolysis bullosa acquisita. J Autoimmun 68:14–22. https://doi.org/10.1016/j.jaut.2015.08.007

    Article  PubMed  Google Scholar 

  16. Ferrante CJ, Leibovich SJ (2012) Regulation of Macrophage polarization and wound healing. Adv Wound Care 1(1):10–16

    Article  Google Scholar 

  17. Flores GE, Caporaso JG, Henley JB, Rideout JR, Domogala D, Chase J et al (2014) Temporal variability is a personalized feature of the human microbiome. Genome Biol 15:531

    Article  Google Scholar 

  18. Fyhrquist N, Ruokolainen L, Suomalainen A, Lehtimaki S, Veckman V, Vendelin J, Karisola P, Lehto M, Savinko T, Jarva H, Kosunen TU, Corander J, Auvinen P, Paulin L, Von Hertzen L, Laatikainen T, Makela M, Haahtela T, Greco D, Hanski I, Alenius H (2014) Acinetobacter species in the skin microbiota protect against allergic sensitization and inflammation. J Allergy Clin Immunol 134:1301–1309. https://doi.org/10.1016/j.jaci.2014.07.059

    Article  CAS  PubMed  Google Scholar 

  19. Gardiner M, Vicaretti M, Sparks J, Bansal S, Bush S, Liu M, Darling A, Harry E, Burke CA (2017) A longitudinal study of the diabetic skin and wound microbiome. Peer J 20(5):e3543. https://doi.org/10.7717/peerj.3543

    Article  CAS  Google Scholar 

  20. Gardner SE, Hillis SL, Heilmann K, Segre JA, Grice EA (2013) The neuropathic diabetic foot ulcer microbiome is associated with clinical factors. Diabetes 62:923e30

    Article  Google Scholar 

  21. Glaudemans AWJM, Uc¸kay I, Lipsky BA (2015) Challenges in diagnosing infection in the diabetic foot. Diabet Med 32:748e59

    Article  Google Scholar 

  22. Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237. https://doi.org/10.1038/nmeth.1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T et al (2012) Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A 109:8334–8339

    Article  CAS  Google Scholar 

  24. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498. https://doi.org/10.1016/j.cell.2009.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–349. https://doi.org/10.1038/nature09074

    Article  CAS  PubMed  Google Scholar 

  26. Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S et al (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8(1):845. https://doi.org/10.1038/s41467-017-00900-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kalan L, Zhou M, Labbie M, Willing B (2017) Measuring the microbiome of chronic wounds with use of a topical antimicrobial dressing. A feasibility study. PLoS ONE 12(11):e187728. https://doi.org/10.1371/journal.pone.0187728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kanno E, Kawakami K, Ritsu M, Ishii K, Tanno H, Toriyabe S, Imai Y, Maruyama R, Tachi M (2011) Wound healing in skin promoted by inoculation with Pseudomonas aeruginosa PAO1: the critical role of tumor necrosis factor-alpha secreted from infiltrating neutrophils. Wound Repair Regen 19:608–621. https://doi.org/10.1111/j.1524-475X.2011.00721.x.12

    Article  PubMed  Google Scholar 

  29. Karbach SH, Schonfelder T, Brandao I, Wilms E, Hormann N, Jackel S et al (2016) Gut Microbiota promote Angiotensin II-induced arterial hypertension and vascular dysfunction. J Am Heart Assoc 5(9):e3698. https://doi.org/10.1161/JAHA.116.003698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, Nielsen J, Backhed F (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103. https://doi.org/10.1038/nature12198

    Article  CAS  PubMed  Google Scholar 

  31. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A, Weir TL, Ehrentraut SF, Pickel C, Kuhn KA, Lanis JM, Nguyen V, Taylor CT, Colgan SP (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17:662–671. https://doi.org/10.1016/j.chom.2015.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lai Y, Cogen AL, Radek KA, Park HJ, Macleod DT, Leichtle A, Ryan AF, Di Nardo A, Gallo RL (2010) Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Investig Dermatol 130:2211–2221. https://doi.org/10.1038/jid.2010.123

    Article  CAS  PubMed  Google Scholar 

  33. Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, Wu ZR, Hooper LV, Schmidt RR, Von Aulock S, Radek KA, Huang CM, Ryan AF, Gallo RL (2009) Commensal bacteria regulate Toll-like receptor 3‑dependent inflammation after skin injury. Nat Med 15:1377–1382. https://doi.org/10.1038/nm.2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leung MHY, Chan KCK, Lee PK (2016) Skin fungal community and its correlation with bacterial community of urban Chinese individuals. Microbiome 4:46

    Article  Google Scholar 

  35. Leung MHY, Wilkins D, Lee PK (2015) Insights into the pan-microbiome: skin microbial communities of Chinese individuals differ from other racial groups. Sci Rep 5:11845

    Article  CAS  Google Scholar 

  36. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G et al (2017) Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5(1):14. https://doi.org/10.1186/s40168-016-0222-x

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ling Z, Liu X, Luo Y, Yuan L, Nelson KE, Wang Y et al (2013) Pyrosequencing analysis of the human microbiota of healthy Chinese undergraduates. BMC Genomics 14:390

    Article  CAS  Google Scholar 

  38. Loesche (2017) Temporal stability in chronic wound Microbiota is associated with poor healing. J Investig Dermatol 137:237e244. https://doi.org/10.1016/j.jid.2016.08.00933

    Article  Google Scholar 

  39. Loiez C, Wallet F, Pischedda P, Renaux E, Senneville E, Mehdi N et al (2007) First case of osteomyelitis caused by “Staphylococcus pettenkoferi”. J Clin Microbiol 45:1069e71

    Article  Google Scholar 

  40. Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M et al (2017) High-fiber diet and acetate supplementation change the gut Microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135(10):964–977

    Article  CAS  Google Scholar 

  41. Mor A, Berencsi K, Nielsen JS, Rungby J, Friborg S, Brandslund I, Christiansen JS, Vaag A, Beck-Nielsen H, Sorensen HT, Thomsen RW (2016) Rates of community-based antibiotic prescriptions and hospital-treated infections in individuals with and without type 2 diabetes: a Danish nationwide cohort study, 2004–2012. Clin Infect Dis 63:501–511. https://doi.org/10.1093/cid/ciw345

    Article  PubMed  Google Scholar 

  42. Mukherjee S, Mitra R, Maitra A, Gupta S, Kumaran S, Chakrabortty A et al (2016) Sebum and hydration levels in specific regions of human face significantly predict the nature and diversity of facial skin microbiome. Sci Rep 6(6):36062

    Article  CAS  Google Scholar 

  43. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737. https://doi.org/10.1038/nri3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oh J, Byrd AL, Park M, Kong HH, Segre JA (2016) Temporal stability of the human skin microbiome. Cell 165:854–866

    Article  CAS  Google Scholar 

  45. Parekh PJ, Nayi VR, Johnson DA, Vinik AI (2016) The role of gut microflora and the cholinergic anti-inflammatory neuroendocrine system in diabetes mellitus. Front Endocrinol (Lausanne) 7:55. https://doi.org/10.3389/fendo.2016.00055

    Article  Google Scholar 

  46. Perez GIP, Gao Z, Jourdain R, Ramirez J, Gany F, Clavaud C et al (2016) Body site is a more determinant factor than human population diversity in the healthy skin microbiome. PLoS ONE 11:e151990

    Article  Google Scholar 

  47. Prompers L, Huijberts M, Apelqvist J, Jude E, Piaggesi A, Bakker K et al (2007) High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. Diabetologia 50:18e25

    Article  Google Scholar 

  48. Roberts AB, Gu X, Buffa JA, Hurd AG, Wang Z, Zhu W et al (2018) Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 24(9):1407–1417. https://doi.org/10.1038/s41591-018-0128-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 105:16767–16772. https://doi.org/10.1073/pnas.0808567105

    Article  PubMed  Google Scholar 

  50. Shu M, Wang Y, Yu J, Kuo S, Coda A, Jiang Y, Gallo RL, Huang CM (2013) Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS ONE 8:e55380. https://doi.org/10.1371/journal.pone.0055380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B et al (2016) Microbiota Dysbiosis controls the Neuroinflammatory response after stroke. J Neurosci 36(28):7428–7440. https://doi.org/10.1523/JNEUROSCI.1114-16.2016

    Article  CAS  PubMed  Google Scholar 

  52. Smith K, Collier A, Townsend EM, O’Donnell LE, Bal AM, Butcher J, Mackay WG, Ramage G, Williams C (2016) One step closer to understanding the role of bacteria in diabetic foot ulcers: characterising the microbiome of ulcers. BMC Microbiol 16:54. https://doi.org/10.1186/s12866-016-0665-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D et al (2013) Cohabiting family members share microbiota with one another and with their dogs. Elife 2:e458

    Article  Google Scholar 

  54. Tellechea A, Kafanas A, Leal EC, Tecilazich F, Kuchibhotla S, Auster ME, Kontoes I, Paolino J, Carvalho E, Nabzdyk LP, Veves A (2013) Increased skin inflammation and blood vessel density in human and experimental diabetes. Int J Low Extrem Wounds 12:4–11. https://doi.org/10.1177/1534734612474303

    Article  PubMed  PubMed Central  Google Scholar 

  55. Van de Wijgert JH, Borgdorff H, Verhelst R, Crucitti T, Francis S, Verstraelen H, Jespers V (2014) The vaginal microbiota: what have we learned after a decade of molecular characterization? PLoS ONE 9:e105998. https://doi.org/10.1371/journal.pone.0105998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Williams MR, Gallo RL (2015) The role of the skin microbiome in atopic dermatitis

    Book  Google Scholar 

  57. Wollenberg MS, Claesen J, Escapa IF, Aldridge KL, Fischbach MA, Lemon KP (2014) Propionibacterium-produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. MBio 5:e1286–14

    Article  CAS  Google Scholar 

  58. Wu HJ, Wu E (2013) The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3(1):4–14. https://doi.org/10.4161/gmic.19320

    Article  Google Scholar 

  59. Wun K, Theriault BR, Pierre JF, Chen EB, Leone VA, Harris KG et al (2018) Microbiota control acute arterial inflammation and neointimal hyperplasia development after arterial injury. PLoS ONE 13(12):e208426. https://doi.org/10.1371/journal.pone.0208426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yosipovitch G, Tur E, Cohen O, Rusecki Y (1993) Skin surface pH in intertriginous areas in NIDDM patients. Possible correlation to candidal intertrigo. Diabetes Care 16:560–563. https://doi.org/10.2337/diacare.16.4.560

    Article  CAS  PubMed  Google Scholar 

  61. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z et al (2016) Gut microbial metabolite TMAO enhances platelet Hyperreactivity and thrombosis risk. Cell 165(1):111–124. https://doi.org/10.1016/j.cell.2016.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Daeschlein.

Ethics declarations

Interessenkonflikt

G. Daeschlein, P. Hinz, T. Kiefer und M. Jünger geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daeschlein, G., Hinz, P., Kiefer, T. et al. Rolle des Mikrobioms bei chronischen Wunden. Hautarzt 70, 422–431 (2019). https://doi.org/10.1007/s00105-019-4425-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-019-4425-5

Schlüsselwörter

Keywords

Navigation