Skip to main content
Log in

Morbus Still im Kindes- und Erwachsenenalter

Still’s disease in children and adults

  • CME
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Die systemische juvenile idiopathische Arthritis (sJIA) ist durch Fieber, Arthritis und weitere Symptome systemischer Inflammation gekennzeichnet. Historisch ist sie nach ihrem Erstbeschreiber George Frederic Still als Morbus Still benannt. Tritt die Erkrankung bei Erwachsenen auf, wird sie als adulte Still-Erkrankung („adult onset Still’s disease“, AOSD) bezeichnet. Die Pathophysiologie der sJIA und der AOSD wird inkomplett verstanden. Die gesteigerte Aktivierung von Inflammasomen und die Expression proinflammatorischer Zytokine spielen eine zentrale Rolle. S100-Proteine, die durch die Aktivierung von Toll-like-Rezeptoren als positiver Verstärker wirken, sind ebenso erhöht im Serum von sJIA-Patienten messbar. Reduzierte Produktion des immunmodulatorischen Zytokins IL-10 könnte zudem zur Aktivierung von Immunzellen und der Produktion inflammatorischer Botenstoffe beitragen. In diesem Beitrag werden die klinische Präsentation, die Differenzialdiagnostik, der aktuelle Wissensstand zur Pathophysiologie sowie Therapieoptionen der sJIA und der AOSD diskutiert.

Abstract

Systemic juvenile idiopathic arthritis (sJIA) is characterized by fever, arthritis, and other signs of systemic inflammation. Historically, sJIA was named Still’s disease after George Frederic Still, who first reported patients. Individuals who manifest after the 16th birthday are diagnosed with adult onset Still’s disease (AOSD). The pathophysiology of sJIA and AOSD are incompletely understood. Increased activation of inflammasomes and the expression of proinflammatory cytokines play a central role. S100 proteins, which can activate Toll-like receptors, thus, maintaining positive feedback loops, have also been detected at increased levels in sera from sJIA patients. Reduced expression of the immune-modulatory cytokine IL-10 may further contribute to immune cell activation and the production of proinflammatory molecules. Here, we discuss the clinical picture, differential diagnoses, the current pathophysiological understanding, and treatment options in sJIA and AOSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Bruck N, Schnabel A, Hedrich CM (2015) Current understanding of the pathophysiology of systemic juvenile idiopathic arthritis (sJIA) and target-directed therapeutic approaches. Clin Immunol 159(1):72–83

    Article  CAS  PubMed  Google Scholar 

  2. Hedrich CM, Bruck N, Fiebig B, Gahr M (2012) Anakinra: a safe and effective first-line treatment in systemic onset juvenile idiopathic arthritis (SoJIA). Rheumatol Int 32(11):3525–3530

    Article  CAS  PubMed  Google Scholar 

  3. Calabro JJ, Marchesano JM (1968) Rash associated with juvenile rheumatoid arthritis. J Pediatr 72(5):611–619

    Article  CAS  PubMed  Google Scholar 

  4. Sunderkotter C, Frieling U, Nashan D, Metze D (1998) Adult-onset Still’s disease and its characteristic rash. Hautarzt 49(12):920–924

    Article  CAS  PubMed  Google Scholar 

  5. Gerfaud-Valentin M, Jamilloux Y, Iwaz J, Seve P (2014) Adult-onset Still’s disease. Autoimmun Rev 13(7):708–722

    Article  CAS  PubMed  Google Scholar 

  6. Correll CK, Binstadt BA (2014) Advances in the pathogenesis and treatment of systemic juvenile idiopathic arthritis. Pediatr Res 75(1–2):176–183

    Article  CAS  PubMed  Google Scholar 

  7. Dudziec E, Pawlak-Bus K, Leszczynski P (2015) Adult-onset Still’s disease as a mask of Hodgkin lymphoma. Reumatologia 53(2):106–110

    Article  PubMed  PubMed Central  Google Scholar 

  8. Martini A (2012) Systemic juvenile idiopathic arthritis. Autoimmun Rev 12(1):56–59

    Article  CAS  PubMed  Google Scholar 

  9. Mellins ED, Macaubas C, Grom AA (2011) Pathogenesis of systemic juvenile idiopathic arthritis: some answers, more questions. Nat Rev Rheumatol 7(7):416–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Behrens EM, Beukelman T, Gallo L et al (2008) Evaluation of the presentation of systemic onset juvenile rheumatoid arthritis: data from the Pennsylvania Systemic Onset Juvenile Arthritis Registry (PASOJAR). J Rheumatol 35(2):343–348

    PubMed  Google Scholar 

  11. Kalyoncu U, Solmaz D, Emmungil H et al (2016) Response rate of initial conventional treatments, disease course, and related factors of patients with adult-onset Still’s disease: data from a large multicenter cohort. J Autoimmun 69:59–63

    Article  PubMed  Google Scholar 

  12. Cush JJ, Medsger TA Jr., Christy WC, Herbert DC, Cooperstein LA (1987) Adult-onset Still’s disease. Clinical course and outcome. Arthritis Rheum 30(2):186–194

    Article  CAS  PubMed  Google Scholar 

  13. Oen K (2002) Long-term outcomes and predictors of outcomes for patients with juvenile idiopathic arthritis. Best Pract Res Clin Rheumatol 16(3):347–360

    Article  PubMed  Google Scholar 

  14. Schneider R, Lang BA, Reilly BJ et al (1992) Prognostic indicators of joint destruction in systemic-onset juvenile rheumatoid arthritis. J Pediatr 120(2 Pt 1):200–205

    Article  CAS  PubMed  Google Scholar 

  15. Singh-Grewal D, Schneider R, Bayer N, Feldman BM (2006) Predictors of disease course and remission in systemic juvenile idiopathic arthritis: significance of early clinical and laboratory features. Arthritis Rheum 54(5):1595–1601

    Article  CAS  PubMed  Google Scholar 

  16. Nirmala N, Brachat A, Feist E et al (2015) Gene-expression analysis of adult-onset Still’s disease and systemic juvenile idiopathic arthritis is consistent with a continuum of a single disease entity. Pediatr Rheumatol Online J 13(1):50. doi:10.1186/s12969-015-0047-3

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nigrovic PA (2014) Review: is there a window of opportunity for treatment of systemic juvenile idiopathic arthritis? Arthritis Rheumatol 66(6):1405–1413

    Article  CAS  PubMed  Google Scholar 

  18. de Jager W, Hoppenreijs EP, Wulffraat NM, Wedderburn LR, Kuis W, Prakken BJ (2007) Blood and synovial fluid cytokine signatures in patients with juvenile idiopathic arthritis: a cross-sectional study. Ann Rheum Dis 66(5):589–598

    Article  PubMed  Google Scholar 

  19. Fall N, Barnes M, Thornton S et al (2007) Gene expression profiling of peripheral blood from patients with untreated new-onset systemic juvenile idiopathic arthritis reveals molecular heterogeneity that may predict macrophage activation syndrome. Arthritis Rheum 56(11):3793–3804

    Article  CAS  PubMed  Google Scholar 

  20. Ogilvie EM, Khan A, Hubank M, Kellam P, Woo P (2007) Specific gene expression profiles in systemic juvenile idiopathic arthritis. Arthritis Rheum 56(6):1954–1965

    Article  CAS  PubMed  Google Scholar 

  21. Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J (2005) Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med 201(9):1479–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nigrovic PA, Mannion M, Prince FH et al (2011) Anakinra as first-line disease-modifying therapy in systemic juvenile idiopathic arthritis: report of forty-six patients from an international multicenter series. Arthritis Rheum 63(2):545–555

    Article  CAS  PubMed  Google Scholar 

  23. Vastert SJ, de Jager W, Noordman BJ et al (2014) Effectiveness of first-line treatment with recombinant interleukin-1 receptor antagonist in steroid-naive patients with new-onset systemic juvenile idiopathic arthritis: results of a prospective cohort study. Arthritis Rheumatol 66(4):1034–1043

    Article  CAS  PubMed  Google Scholar 

  24. Verbsky JW, White AJ (2004) Effective use of the recombinant interleukin 1 receptor antagonist anakinra in therapy resistant systemic onset juvenile rheumatoid arthritis. J Rheumatol 31(10):2071–2075

    PubMed  Google Scholar 

  25. Barker BR, Taxman DJ, Ting JP (2011) Cross-regulation between the IL-1beta/IL-18 processing inflammasome and other inflammatory cytokines. Curr Opin Immunol 23(5):591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de Jager W, Vastert SJ, Beekman JM et al (2009) Defective phosphorylation of interleukin-18 receptor beta causes impaired natural killer cell function in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 60(9):2782–2793

    Article  PubMed  Google Scholar 

  27. De Benedetti F, Brunner H, Ruperto N et al (2015) Catch-up growth during tocilizumab therapy for systemic juvenile idiopathic arthritis: results from a phase III trial. Arthritis Rheumatol 67(3):840–848

    Article  PubMed  Google Scholar 

  28. de Benedetti F, Massa M, Robbioni P, Ravelli A, Burgio GR, Martini A (1991) Correlation of serum interleukin-6 levels with joint involvement and thrombocytosis in systemic juvenile rheumatoid arthritis. Arthritis Rheum 34(9):1158–1163

    Article  PubMed  Google Scholar 

  29. De Benedetti F, Meazza C, Oliveri M et al (2001) Effect of IL-6 on IGF binding protein-3: a study in IL-6 transgenic mice and in patients with systemic juvenile idiopathic arthritis. Endocrinology 142(11):4818–4826

    Article  PubMed  Google Scholar 

  30. Jin J, Samuvel DJ, Zhang X et al (2011) Coactivation of TLR4 and TLR2/6 coordinates an additive augmentation on IL-6 gene transcription via p38MAPK pathway in U937 mononuclear cells. Mol Immunol 49(3):423–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Foell D, Frosch M, Sorg C, Roth J (2004) Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation. Clin Chim Acta 344(1–2):37–51

    Article  CAS  PubMed  Google Scholar 

  32. Kessel C, Holzinger D, Foell D (2013) Phagocyte-derived S100 proteins in autoinflammation: putative role in pathogenesis and usefulness as biomarkers. Clin Immunol 147(3):229–241

    Article  CAS  PubMed  Google Scholar 

  33. Wittkowski H, Frosch M, Wulffraat N et al (2008) S100A12 is a novel molecular marker differentiating systemic-onset juvenile idiopathic arthritis from other causes of fever of unknown origin. Arthritis Rheum 58(12):3924–3931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hedrich CM, Bream JH (2010) Cell type-specific regulation of IL-10 expression in inflammation and disease. Immunol Res 47(1–3):185–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hofmann SR, Rosen-Wolff A, Tsokos GC, Hedrich CM (2012) Biological properties and regulation of IL-10 related cytokines and their contribution to autoimmune disease and tissue injury. Clin Immunol 143(2):116–127

    Article  CAS  PubMed  Google Scholar 

  36. Hofmann SR, Kubasch AS, Ioannidis C et al (2015) Altered expression of IL-10 family cytokines in monocytes from CRMO patients result in enhanced IL-1beta expression and release. Clin Immunol 161(2):300–307

    Article  CAS  PubMed  Google Scholar 

  37. Hofmann SR, Morbach H, Schwarz T, Rosen-Wolff A, Girschick HJ, Hedrich CM (2012) Attenuated TLR4/MAPK signaling in monocytes from patients with CRMO results in impaired IL-10 expression. Clin Immunol 145(1):69–76

    Article  CAS  PubMed  Google Scholar 

  38. Hofmann SR, Schwarz T, Moller JC et al (2011) Chronic non-bacterial osteomyelitis is associated with impaired Sp1 signaling, reduced IL10 promoter phosphorylation, and reduced myeloid IL-10 expression. Clin Immunol 141(3):317–327

    Article  CAS  PubMed  Google Scholar 

  39. Fife MS, Gutierrez A, Ogilvie EM et al (2006) Novel IL10 gene family associations with systemic juvenile idiopathic arthritis. Arthritis Res Ther 8(5):R148

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moller JC, Paul D, Ganser G et al (2010) IL10 promoter polymorphisms are associated with systemic onset juvenile idiopathic arthritis (SoJIA). Clin Exp Rheumatol 28(6):912–918

    CAS  PubMed  Google Scholar 

  41. Stock CJ, Ogilvie EM, Samuel JM, Fife M, Lewis CM, Woo P (2008) Comprehensive association study of genetic variants in the IL-1 gene family in systemic juvenile idiopathic arthritis. Genes Immun 9(4):349–357

    Article  CAS  PubMed  Google Scholar 

  42. Fishman D, Faulds G, Jeffery R et al (1998) The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 102(7):1369–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ogilvie EM, Fife MS, Thompson SD et al (2003) The −174 G allele of the interleukin-6 gene confers susceptibility to systemic arthritis in children: a multicenter study using simplex and multiplex juvenile idiopathic arthritis families. Arthritis Rheum 48(11):3202–3206

    Article  CAS  PubMed  Google Scholar 

  44. De Benedetti F, Meazza C, Vivarelli M et al (2003) Functional and prognostic relevance of the −173 polymorphism of the macrophage migration inhibitory factor gene in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 48(5):1398–1407

    Article  PubMed  Google Scholar 

  45. Donn RP, Shelley E, Ollier WE, Thomson W, British Paediatric Rheumatology Study Group (2001) A novel 5′-flanking region polymorphism of macrophage migration inhibitory factor is associated with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 44(8):1782–1785

    Article  CAS  PubMed  Google Scholar 

  46. Meazza C, Travaglino P, Pignatti P et al (2002) Macrophage migration inhibitory factor in patients with juvenile idiopathic arthritis. Arthritis Rheum 46(1):232–237

    Article  PubMed  Google Scholar 

  47. Wakil SM, Monies DM, Abouelhoda M et al (2015) Association of a mutation in LACC1 with a monogenic form of systemic juvenile idiopathic arthritis. Arthritis Rheumatol 67(1):288–295

    Article  CAS  PubMed  Google Scholar 

  48. Ombrello MJ, Remmers EF, Tachmazidou I et al (2015) HLA-DRB1*11 and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis. Proc Natl Acad Sci U S A 112(52):15970–15975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koeller M, Kiener H, Simonitsch I et al (1995) Destructive lymphadenopathy and T‑lymphocyte activation in adult-onset Still’s disease. Br J Rheumatol 34(10):984–988

    Article  CAS  PubMed  Google Scholar 

  50. Omoyinmi E, Hamaoui R, Pesenacker A et al (2012) Th1 and Th17 cell subpopulations are enriched in the peripheral blood of patients with systemic juvenile idiopathic arthritis. Rheumatology (Oxford) 51(10):1881–1886

    Article  CAS  Google Scholar 

  51. Behrens EM, Beukelman T, Paessler M, Cron RQ (2007) Occult macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis. J Rheumatol 34(5):1133–1138

    PubMed  Google Scholar 

  52. Hadchouel M, Prieur AM, Griscelli C (1985) Acute hemorrhagic, hepatic, and neurologic manifestations in juvenile rheumatoid arthritis: possible relationship to drugs or infection. J Pediatr 106(4):561–566

    Article  CAS  PubMed  Google Scholar 

  53. Sawhney S, Woo P, Murray KJ (2001) Macrophage activation syndrome: a potentially fatal complication of rheumatic disorders. Arch Dis Child 85(5):421–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Donn R, Ellison S, Lamb R, Day T, Baildam E, Ramanan AV (2008) Genetic loci contributing to hemophagocytic lymphohistiocytosis do not confer susceptibility to systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 58(3):869–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang K, Biroschak J, Glass DN et al (2008) Macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis is associated with MUNC13-4 polymorphisms. Arthritis Rheum 58(9):2892–2896

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vastert SJ, van Wijk R, D’Urbano LE et al (2010) Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatology (Oxford) 49(3):441–449

    Article  CAS  Google Scholar 

  57. Yanagimachi M, Goto H, Miyamae T et al (2011) Association of IRF5 polymorphisms with susceptibility to hemophagocytic lymphohistiocytosis in children. J Clin Immunol 31(6):946–951

    Article  PubMed  Google Scholar 

  58. Yanagimachi M, Naruto T, Miyamae T et al (2011) Association of IRF5 polymorphisms with susceptibility to macrophage activation syndrome in patients with juvenile idiopathic arthritis. J Rheumatol 38(4):769–774

    Article  CAS  PubMed  Google Scholar 

  59. Beukelman T (2014) Treatment advances in systemic juvenile idiopathic arthritis. F1000prime Rep 6:21

    Article  PubMed  PubMed Central  Google Scholar 

  60. Quartier P (2010) Current treatments for juvenile idiopathic arthritis. Joint Bone Spine 77(6):511–516

    Article  CAS  PubMed  Google Scholar 

  61. DeWitt EM, Kimura Y, Beukelman T et al (2012) Consensus treatment plans for new-onset systemic juvenile idiopathic arthritis. Arthritis Care Res (Hoboken) 64(7):1001–1010

    CAS  Google Scholar 

  62. Kimura Y, DeWitt EM, Beukelman T et al (2014) Adding canakinumab to the Childhood Arthritis and Rheumatology Research Alliance consensus treatment plans for systemic juvenile idiopathic arthritis: comment on the article by DeWitt et al. Arthritis Care Res (Hoboken) 66(9):1430–1431

    Article  CAS  Google Scholar 

  63. Garcia-Carrasco M, Fuentes-Alexandro S, Escarcega RO, Rojas-Rodriguez J, Escobar LE (2007) Efficacy of thalidomide in systemic onset juvenile rheumatoid arthritis. Joint Bone Spine 74(5):500–503

    Article  PubMed  Google Scholar 

  64. Quartier P, Allantaz F, Cimaz R et al (2011) A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Ann Rheum Dis 70(5):747–754

    Article  CAS  PubMed  Google Scholar 

  65. Giampietro C, Ridene M, Lequerre T et al (2013) Anakinra in adult-onset Still’s disease: long-term treatment in patients resistant to conventional therapy. Arthritis Care Res (Hoboken) 65(5):822–826

    Article  CAS  Google Scholar 

  66. Ortiz-Sanjuan F, Blanco R, Riancho-Zarrabeitia L et al (2015) Efficacy of Anakinra in refractory adult-onset still’s disease: multicenter study of 41 patients and literature review. Medicine (Baltimore) 94(39):e1554

    Article  CAS  Google Scholar 

  67. Rossi-Semerano L, Fautrel B, Wendling D et al (2015) Tolerance and efficacy of off-label anti-interleukin-1 treatments in France: a nationwide survey. Orphanet J Rare Dis 10:19

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ruperto N, Brunner HI, Quartier P et al (2012) Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N Engl J Med 367(25):2396–2406

    Article  CAS  PubMed  Google Scholar 

  69. Ruperto N, Quartier P, Wulffraat N et al (2012) A phase II, multicenter, open-label study evaluating dosing and preliminary safety and efficacy of canakinumab in systemic juvenile idiopathic arthritis with active systemic features. Arthritis Rheum 64(2):557–567

    Article  CAS  PubMed  Google Scholar 

  70. Goldbach-Mansky R, Shroff SD, Wilson M et al (2008) A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 Trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum 58(8):2432–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hashkes PJ, Spalding SJ, Giannini EH et al (2012) Rilonacept for colchicine-resistant or -intolerant familial Mediterranean fever: a randomized trial. Ann Intern Med 157(8):533–541

    Article  PubMed  Google Scholar 

  72. Hoffman HM, Throne ML, Amar NJ et al (2008) Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum 58(8):2443–2452

    Article  CAS  PubMed  Google Scholar 

  73. Petryna O, Cush JJ, Efthimiou P (2012) IL-1 Trap rilonacept in refractory adult onset Still’s disease. Ann Rheum Dis 71(12):2056–2057

    Article  PubMed  Google Scholar 

  74. De Benedetti F, Brunner HI, Ruperto N et al (2012) Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N Engl J Med 367(25):2385–2395

    Article  PubMed  Google Scholar 

  75. Yokota S, Miyamae T, Imagawa T et al (2005) Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 52(3):818–825

    Article  CAS  PubMed  Google Scholar 

  76. Yokota S, Miyamae T, Imagawa T, Katakura S, Kurosawa R, Mori M (2005) Clinical study of tocilizumab in children with systemic-onset juvenile idiopathic arthritis. Clin Rev Allergy Immunol 28(3):231–238

    Article  CAS  PubMed  Google Scholar 

  77. Ortiz-Sanjuan F, Blanco R, Calvo-Rio V et al (2014) Efficacy of tocilizumab in conventional treatment-refractory adult-onset Still’s disease: multicenter retrospective open-label study of thirty-four patients. Arthritis Rheumatol 66(6):1659–1665

    Article  CAS  PubMed  Google Scholar 

  78. Puechal X, DeBandt M, Berthelot JM et al (2011) Tocilizumab in refractory adult Still’s disease. Arthritis Care Res (Hoboken) 63(1):155–159

    Article  CAS  Google Scholar 

  79. Al-Homood IA (2014) Biologic treatments for adult-onset Still’s disease. Rheumatology (Oxford) 53(1):32–38

    Article  CAS  Google Scholar 

  80. Russo RA, Katsicas MM (2009) Clinical remission in patients with systemic juvenile idiopathic arthritis treated with anti-tumor necrosis factor agents. J Rheumatol 36(5):1078–1082

    Article  CAS  PubMed  Google Scholar 

  81. Quartuccio L, Maset M, De Vita S (2010) Efficacy of abatacept in a refractory case of adult-onset Still’s disease. Clin Exp Rheumatol 28(2):265–267

    CAS  PubMed  Google Scholar 

  82. Lee WS, Yoo WH (2014) Rituximab for refractory adult-onset Still’s disease with thrombotic microangiopathy. Rheumatology (Oxford) 53(9):1717–1718

    Article  CAS  Google Scholar 

  83. Brinkman DM, de Kleer IM, ten Cate R et al (2007) Autologous stem cell transplantation in children with severe progressive systemic or polyarticular juvenile idiopathic arthritis: long-term follow-up of a prospective clinical trial. Arthritis Rheum 56(7):2410–2421

    Article  CAS  PubMed  Google Scholar 

  84. Brinkman DM, Jol-van der Zijde CM, ten Dam MM et al (2007) Resetting the adaptive immune system after autologous stem cell transplantation: lessons from responses to vaccines. J Clin Immunol 27(6):647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C (2015) NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 6:262

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Hedrich.

Ethics declarations

Interessenkonflikt

C.M. Hedrich nahm an Advisory Boards der Fa. Novartis zum Thema systemische juvenile idiopathische Arthritis teil und erhielt Honorare für Vorträge zur sJIA durch die Firma Roche. M. Aringer nahm an Advisory boards von AbbVie, Chugai, MSD, Pfizer und Roche teil. C. Günther gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Meurer, Dresden

S. Ständer, Münster

E. von Stebut-Borschitz, Mainz

R.-M. Szeimies, Recklinghausen

CME-Fragebogen

CME-Fragebogen

Sie betreuen ein 8‑jähriges Mädchen mit hohem Fieber (bis 40 °C) seit 2 Wochen, Oligoarthritis, Hepatosplenomegalie und tiefrotem Exanthem. Welche der folgenden Differenzialdiagnosen trifft anhand der berichteten Klinik nicht zu?

Systemische juvenile idiopathische Arthritis

Leukämie

Disseminiertes Granuloma anulare

Lymphom

Infektiöse Mononukleose

Welches der folgenden Symptome ist kein Klassifikationskriterium für die systemische juvenile idiopathische Arthritis?

Hohes Fieber seit 2 Wochen

Exanthem

Lymphadenopathie

Arthralgien

Hepatomegalie

Welche der folgenden Therapien ist aktuell nicht für die Therapie der sJIA mit Polyarthritis zugelassen?

Methotrexat

Anakinra

Canakinumab

Tocilizumab

Ibuprofen

Welche der folgenden Komplikationen ist bei der systemischen JIA eher unwahrscheinlich?

Amyloidose

Schwere destruierende Polyarthritis

Wachstumsverzögerung

Kachexie

ZNS-Verkalkungen

Welche der folgenden Erkrankungen erfüllt nicht die Kriterien, um als „klassische“ autoinflammatorische Erkrankung eingeordnet zu werden?

TRAPS (TNF-Rezeptor assoziiertes periodisches Syndrom)

Systemische JIA

Adulter Morbus Still

Systemischer Lupus erythematodes

Familiäres Mittelmeerfieber

Welche der folgenden Aussagen über die sJIA trifft nicht zu?

Es gibt chronische Verläufe mit anhaltend hoher systemischer Entzündung.

Das Makrophagenaktivierungssyndrom ist eine vital bedrohliche Komplikation.

Es gibt zeitlich begrenzte monophasische Verläufe.

Bei einem Teil der Patienten sind IgM-Rheumafaktoren nachweisbar.

Bei Jungen über 6 Jahren gilt HLA-B27-Positivität als Ausschlusskriterium.

Welcher deutlich auffällige Laborbefund würde nicht zu einer AOSD passen?

ANA hochtitrig positiv

Anämie chronischer Erkrankungen

CRP deutlich erhöht

Ferritin deutlich erhöht

Serum-Amyloid A deutlich erhöht

Bei einer jungen Erwachsenen hat sich aus einer AOSD eine seronegative chronische Polyarthritis entwickelt. Methotrexat hält die Erkrankung nicht ausreichend unter Kontrolle. Welches Biologikum ist jetzt aufgrund von Beobachtungen in größeren Fallserien Erfolg versprechend?

Abatacept

Anakinra

Etanercept

Rituximab

Tocilizumab

Welche Aussage trifft zu? Das Exanthem beim Morbus Still …

erscheint einige Tage nach beginnender Abheilung der Erkrankung.

tritt bevorzugt während der Fieberschübe mittags oder abends auf.

tritt nie in Zusammenhang mit Fieber auf.

erscheint in den frühen Morgenstunden.

erscheint mit den Fieberschüben an Händen und Fußsohlen.

Welche Aussage trifft zu? Das Exanthem zeigt sich in Form von …

flüchtigen blassrosa bis lachsfarbenen Makulä am Stamm.

girlandenförmigen schuppenden Plaques an den Extremitäten.

über mindestens 24 h bestehenden urtikariellen Infiltraten.

disseminiert makulopustulösen Effloreszenzen mit Betonung der Beugen.

über 3 Wochen persistierenden makulopapulösen Infiltraten am Stamm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedrich, C.M., Günther, C. & Aringer, M. Morbus Still im Kindes- und Erwachsenenalter. Hautarzt 68, 497–511 (2017). https://doi.org/10.1007/s00105-017-3983-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-017-3983-7

Schlüsselwörter

Keywords

Navigation