Skip to main content
Log in

Computergestützte Verfahren in der Orthopädie und Unfallchirurgie – wo stehen wir?

Computer-assisted procedures in orthopedics and trauma surgery—Where do we stand?

  • Leitthema
  • Published:
Die Chirurgie Aims and scope Submit manuscript

Zusammenfassung

Computergestützte Verfahren werden in der Orthopädie und Unfallchirurgie zunehmend relevanter. Die Datenlage zu diesen Systemen hat sich in den letzten Jahren verbessert, hat aber immer noch eine geringe Evidenz. Vor allem Daten zu kurz- oder mittelfristigen Ergebnissen zum Einsatz dieser Verfahren sind aktuell verfügbar. Diese konnten zeigen, dass durch den Einsatz computergestützter Verfahren eine verbesserte Präzision und Reproduzierbarkeit der operativen Eingriffe erreicht werden kann. Dennoch besteht immer noch keine Empfehlung in den gängigen Leitlinien für einen routinemäßigen Einsatz.

Abstract

Computer-assisted procedures are becoming increasingly more relevant in orthopedics and trauma surgery. The data situation on these systems has improved in recent years but still has a low level of evidence. In particular, data on short-term or medium-term results on the use of these procedures are currently available. These could show that improved precision and reproducibility of the surgical procedures can be achieved by the use of computer-assisted procedures. Nevertheless, there is still no recommendation in the current guidelines for routine use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Akamatsu Y, Kobayashi H, Kusayama Y et al (2016) Comparative study of opening-wedge high tibial osteotomy with and without a combined computed tomography-based and image-free navigation system. Arthroscopy 32(10):2072–2081

    Article  PubMed  Google Scholar 

  2. Batailler C, Hannouche D, Benazzo F et al (2021) Concepts and techniques of a new robotically assisted technique for total knee arthroplasty: the ROSA knee system. Arch Orthop Trauma Surg 141(12):2049–2058

    Article  PubMed  Google Scholar 

  3. Batailler C, Fernandez A, Swan J et al (2021) MAKO CT-based robotic arm-assisted system is a reliable procedure for total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc 29(11):3585–3598

    Article  PubMed  Google Scholar 

  4. Chouteau J, Benareau I, Testa R et al (2008) Comparative study of knee anterior cruciate ligament reconstruction with or without fluoroscopic assistance: a prospective study of 73 cases. Arch Orthop Trauma Surg 128(9):945–950

    Article  PubMed  Google Scholar 

  5. Han X, Tian W, Liu Y et al (2019) Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial. J Neurosurg Spine. https://doi.org/10.3171/2018.10.SPINE18487

    Article  PubMed  Google Scholar 

  6. Hernandez D, Garimella R, Eltorai AEM et al (2017) Computer-assisted orthopaedic surgery. Orthop Surg 9(2):152–158

    Article  PubMed  PubMed Central  Google Scholar 

  7. Herzog J, Wendlandt R, Hillbricht S et al (2019) Optimising the tip-apex-distance in trochanteric femoral fracture fixation using the ADAPT-navigated technique, a longitudinal matched cohort study. Injury 50(3):744–751

    Article  PubMed  Google Scholar 

  8. Honl M, Dierk O, Gauck C et al (2003) Comparison of robotic-assisted and manual implantation of a primary total hip replacement. A prospective study. J Bone Joint Surg Am 85(8):1470–1478

    Article  PubMed  Google Scholar 

  9. Huang M, Tetreault TA, Vaishnav A et al (2021) The current state of navigation in robotic spine surgery. Ann Transl Med 9(1):86

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huntsman KT, Ahrendtsen LA, Riggleman JR et al (2020) Robotic-assisted navigated minimally invasive pedicle screw placement in the first 100 cases at a single institution. J Robot Surg 14(1):199–203

    Article  PubMed  Google Scholar 

  11. Jiang B, Azad TD, Cottrill E et al (2019) New spinal robotic technologies. Front Med 13(6):723–729

    Article  PubMed  Google Scholar 

  12. Joskowicz L, Hazan EJ (2016) Computer Aided Orthopaedic Surgery: Incremental shift or paradigm change? Med Image Anal 33:84–90

    Article  PubMed  Google Scholar 

  13. Karthik K, Colegate-Stone T, Dasgupta P et al (2015) Robotic surgery in trauma and orthopaedics: a systematic review. Bone Joint J 97-B(3):292–299

    Article  CAS  PubMed  Google Scholar 

  14. Kenanidis E, Paparoidamis G, Milonakis N et al (2022) Comparative outcomes between a new robotically assisted and a manual technique for total knee arthroplasty in patients with osteoarthritis: a prospective matched comparative cohort study. Eur J Orthop Surg Traumatol. https://doi.org/10.1007/s00590-022-03274-3

    Article  PubMed  Google Scholar 

  15. Knapp PW, Nett MP, Scuderi GR (2022) Optimizing total knee Arthroplasty with ROSA® robotic technology. Surg Technol Int 40:289–296

    PubMed  Google Scholar 

  16. Lonjon N, Chan-Seng E, Costalat V et al (2016) Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J 25(3):947–955

    Article  PubMed  Google Scholar 

  17. Mezger U, Jendrewski C, Bartels M (2013) Navigation in surgery. Langenbecks Arch Surg 398(4):501–514

    Article  PubMed  PubMed Central  Google Scholar 

  18. Perazzini P, Trevisan M, Sembenini P et al (2020) The Mako ™ robotic arm-assisted total hip arthroplasty using direct anterior approach: surgical technique, skills and pitfals. Acta Biomed 91(4-S):21–30

    PubMed  PubMed Central  Google Scholar 

  19. Picard F, Deakin AH, Riches PE et al (2019) Computer assisted orthopaedic surgery: past, present and future. Med Eng Phys 72:55–65

    Article  PubMed  Google Scholar 

  20. Price AJ, Alvand A, Troelsen A et al (2018) Knee replacement. Lancet 392(10158):1672–1682

    Article  PubMed  Google Scholar 

  21. Ringel F, Stüer C, Reinke A et al (2012) Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine 37(8):E496–E501

    Article  PubMed  Google Scholar 

  22. Rossi SMP, Sangaletti R, Perticarini L et al (2022) High accuracy of a new robotically assisted technique for total knee arthroplasty: an in vivo study. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06800-8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schuijt HJ, Hundersmarck D, Smeeing DPJ et al (2021) Robot-assisted fracture fixation in orthopaedic trauma surgery: a systematic review. OTA Int 4(4):e153

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schulz AP, Seide K, Queitsch C et al (2007) Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot 3(4):301–306

    Article  PubMed  Google Scholar 

  25. Seidenstein A, Birmingham M, Foran J et al (2021) Better accuracy and reproducibility of a new robotically-assisted system for total knee arthroplasty compared to conventional instrumentation: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 29(3):859–866

    Article  PubMed  Google Scholar 

  26. Siemens Healthineers Cios Spin. https://www.siemens-healthineers.com/de/surgical-c-arms-and-navigation/mobile-c-arms/cios-spin. Zugegriffen: 2. Sept. 2022

  27. Simcox T, Tarazona D, Becker J et al (2021) Improved implant positioning of cephalomedullary nail for trochanteric fractures using the Stryker ADAPT navigation system. Injury 52(11):3404–3407

    Article  PubMed  Google Scholar 

  28. Stryker Corporation ADAPT for Gamma3. https://www.stryker.com/us/en/trauma-and-extremities/products/ADAPT-for-Gamma3.html. Zugegriffen: 2. Sept. 2022

  29. Stübig T, Windhagen H, Krettek C et al (2020) Computer-assisted orthopedic and trauma surgery. Dtsch Arztebl Int 117(47):793–800

    PubMed  PubMed Central  Google Scholar 

  30. Swartman B, Frere D, Wei W et al (2017) 2D projection-based software application for mobile C‑arms optimises wire placement in the proximal femur—An experimental study. Injury 48(10):2068–2073

    Article  CAS  PubMed  Google Scholar 

  31. Swartman B, Frere D, Wei W et al (2018) Wire placement in the sustentaculum Tali using a 2D projection-based software application for mobile C‑arms: cadaveric study. Foot Ankle Int 39(4):485–492

    Article  PubMed  Google Scholar 

  32. Takai H, Murayama M, Kii S et al (2018) Accuracy analysis of computer-assisted surgery for femoral trochanteric fracture using a fluoroscopic navigation system: Stryker ADAPT® system. Injury 49(6):1149–1154

    Article  PubMed  Google Scholar 

  33. Takai H, Mizuta K, Murayama M et al (2020) Comparing the usefulness of a fluoroscopic navigation system in femoral trochanteric fracture for orthopaedic residents with the conventional method. Injury 51(8):1840–1845

    Article  PubMed  Google Scholar 

  34. Vo CD, Jiang B, Azad TD et al (2020) Robotic spine surgery: current state in minimally invasive surgery. Global Spine J 10(2 Suppl):34S–40S

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang X‑D, Lan H, Li K‑N (2019) Treatment of femoral neck fractures with cannulated screw invasive internal fixation assisted by orthopaedic surgery robot positioning system. Orthop Surg 11(5):864–872

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Ng N, Scott CEH et al (2022) Robotic arm-assisted versus manual unicompartmental knee arthroplasty : a systematic review and meta-analysis of the MAKO robotic system. Bone Joint J 104-B(5):541–548

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Zimmermann.

Ethics declarations

Interessenkonflikt

F. Zimmermann, J. Franke, S.Y. Vetter und P.A. Grützner sind Mitglieder der MINTOS-Forschungsgruppe der BG Klinik Ludwigshafen, die von Siemens Healthineers (Erlangen, Deutschland) und Nuvasive (San Diego, CA, USA) mit finanzieller Forschungsförderung unterstützt wird.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

A. Seekamp, Kiel

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, F., Franke, J., Vetter, S.Y. et al. Computergestützte Verfahren in der Orthopädie und Unfallchirurgie – wo stehen wir?. Chirurgie 94, 292–298 (2023). https://doi.org/10.1007/s00104-022-01789-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-022-01789-3

Schlüsselwörter

Keywords

Navigation