Skip to main content
Log in

Moderne molekulare und bildgebende Diagnostik bei neuroendokrinen Neoplasien des Pankreas

Modern molecular and imaging diagnostics in pancreatic neuroendocrine neoplasms

  • Leitthema
  • Published:
Die Chirurgie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund, Ziel der Arbeit

Neue molekulardiagnostische und bildgebende Verfahren bieten sich an für die Einschätzung der Ausdehnung, des Rezidivrisikos, der Prognose und des Therapieansprechens der pankreatischen neuroendokrinen Neoplasien (pNENs) und stellen damit eine entscheidende Hilfestellung für die Indikation chirurgischer Maßnahmen dar, vor allem in fortgeschrittenen Stadien.

Methoden

Es erfolgt die narrative Bewertung der Optionen und der Evidenz für die moderne molekulare und bildgebende Diagnostik bei pNENs auf der Basis der aktuellen Literatur.

Ergebnisse

Während zirkulierende DNA, zirkulierende Tumorzellen und MicroRNAs sich bislang im klinischen Alltag nicht durchsetzen konnten, legt die aktuelle Literatur eine vielversprechende Rolle für den sog. NETest nahe. Aktuelle Studien belegen seine mögliche Bedeutung für die Chirurgie der pNENs. Neben der Positronenemissionstomografie (PET) mit 68Gallium markierten Somatostatinanaloga (68Ga-DOTA-SSA)- und der [18]FDG(Fluorodesoxyglucose)-Positronenemissionstomographie, die der Goldstandard für die Bildgebung der NENs bleiben, stellen Radiomics eine spannende Alternative zur Biopsie dar und werden möglicherweise in der Zukunft eine zunehmend wichtige Rolle spielen.

Diskussion

Zu dem seit den 1970er-Jahren klinisch noch weit verbreiteten Chromogranin A gibt es inzwischen interessante Alternativen, um Ausdehnung, Rezidivrisiko, Prognose und Therapieansprechen der pNENs abzubilden. Im Sinne der personalisierten Medizin sollten die moderne molekulare und die radiologische Diagnostik helfen, chirurgische Therapien und das Follow-up in der Zukunft anzupassen.

Abstract

Background and objective

New molecular diagnostic and radiologic imaging techniques can be used to assess the extent, risk of recurrence, prognosis and response to treatment of pancreatic neuroendocrine neoplasms (pNENs). They therefore represent a decisive help in setting the indications for surgical treatment, especially in advanced stages.

Methods

This article presents a narrative assessment of the options and evidence for modern molecular and radiologic imaging diagnostics of pNENs based on the current literature.

Results

While circulating DNA, circulating tumor cells and microRNAs have not yet become established in everyday clinical practice, the current literature suggests a promising role for the so-called NETest. Recent studies demonstrated its possible importance for the surgical management of pNENs. Besides [68Ga]Ga-DOTA-SSA-PET and [18]FDG-PET, which remain the gold standards for imaging NENs, radiomics represent an exciting alternative to biopsies and will possibly play an increasingly important role in the future.

Discussion

There are new promising alternatives to chromogranin A, which has been clinically widespread since the 1970s despite several drawbacks, to map the extent, risk of recurrence, prognosis and response to treatment of pancreatic pNENs. In terms of personalized medicine, modern molecular and radiological diagnostics should play an increasing role for indicating and planning surgical treatment and for follow-up in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Lu L et al (2021) Epidemiologic trends and prognostic risk factors of patients with pancreatic neuroendocrine neoplasms in the US: an updated population-based study. Future Oncol 17(5):549–563. https://doi.org/10.2217/fon-2020-0543

    Article  CAS  PubMed  Google Scholar 

  2. Malczewska A, Oberg K, Kos-Kudla B (2021) NETest is superior to chromogranin A in neuroendocrine neoplasia: a prospective ENETS CoE analysis. Endocr Connect 10(1):110–123. https://doi.org/10.1530/EC-20-0417

    Article  CAS  PubMed  Google Scholar 

  3. Öberg K (2021) Molecular genomic blood biomarkers for neuroendocrine tumors: the long and winding road from berzelius and bence jones to a neuroendocrine destination. Neuroendocrinology 111:297–303. https://doi.org/10.1159/000508488

    Article  CAS  PubMed  Google Scholar 

  4. Oberg K, Modlin IM, De Herder W, Pavel M, Klimstra D, Frilling A, Metz DC, Heaney A, Kwekkeboom D, Strosberg J, Meyer T, Moss SF, Washington K, Wolin E, Liu E, Goldenring J (2015) Consensus on biomarkers for neuroendocrine tumour disease. Lancet Oncol 16(9):e435–e446. https://doi.org/10.1016/S1470-2045(15)00186-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paik WH, Ryu JK, Song BJ, Kim J, Park JK, Kim Y‑T, Yoon YB (2013) Clinical usefulness of plasma chromogranin A in pancreatic neuroendocrine neoplasm. J Korean Med Sci 28(5):750–754. https://doi.org/10.3346/jkms.2013.28.5.750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qiu W, Christakis I, Silva A, Bassett RL Jr, Cao L, Meng QH, Gardner Grubbs E, Zhao H, Yao JC, Lee JE, Perrier ND (2016) Utility of chromogranin A, pancreatic polypeptide, glucagon, and gastrin in the diagnosis and follow-up of pancreatic neuroendocrine tumors in multiple endocrine neoplasia type 1 patients. Clin Endocrinol 85(3):400–407. https://doi.org/10.1111/cen.13119

    Article  CAS  Google Scholar 

  7. Modlin IM, Kidd M, Malczewska A, Drozdov I, Bodei L, Matar S, Chung KM (2018) The NEtest: the clinical utility of multigene blood analysis in the diagnosis and management of neuroendocrine tumors. Endocrinol Metab Clin North Am 47(3):485–504. https://doi.org/10.1016/j.ecl.2018.05.002.5;16:e435046

    Article  PubMed  PubMed Central  Google Scholar 

  8. Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, Lawlor RT, Johns AL, Miller DK, Mafficini A, Rusev B, Scardoni M, Antonello D, Barbi S, Sikora KO, Cingarlini S, Vicentini C, McKay S, Quinn MC, Bruxner TJ, Christ AN, Harliwong I, Idrisoglu S, McLean S, Nourse C, Nourbakhsh E, Wilson PJ, Anderson MJ, Fink JL, Newell F, Waddell N, Holmes O, Kazakoff SH, Leonard C, Wood S, Xu Q, Nagaraj SH, Amato E, Dalai I, Bersani S, Cataldo I, Dei Tos AP, Capelli P, Davì MV, Landoni L, Malpaga A, Miotto M, Whitehall VL, Leggett BA, Harris JL, Harris J, Jones MD, Humphris J, Chantrill LA, Chin V, Nagrial AM, Pajic M, Scarlett CJ, Pinho A, Rooman I, Toon C, Wu J, Pinese M, Cowley M, Barbour A, Mawson A, Humphrey ES, Colvin EK, Chou A, Lovell JA, Jamieson NB, Duthie F, Gingras MC, Fisher WE, Dagg RA, Lau LM, Lee M, Pickett HA, Reddel RR, Samra JS, Kench JG, Merrett ND, Epari K, Nguyen NQ, Zeps N, Falconi M, Simbolo M, Butturini G, Van Buren G, Partelli S, Fassan M; Australian Pancreatic Cancer Genome Initiative, Khanna KK, Gill AJ, Wheeler DA, Gibbs RA, Musgrove EA, Bassi C, Tortora G, Pederzoli P, Pearson JV, Waddell N, Biankin AV, Grimmond SM (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543(7643):65–71. https://doi.org/10.1038/nature21063

    Article  CAS  PubMed  Google Scholar 

  9. Chatani PD, Agarwal SK, Sadowski SM (2021) Molecular signatures and their clinical utility in pancreatic neuroendocrine tumors. Front Endocrinol 11:575620. https://doi.org/10.3389/fendo.2020.575620

    Article  Google Scholar 

  10. Fahrmann JF, Wasylishen AR, Pieterman CRC, Irajizad E, Vykoukal J, Murage E, Wu R, Dennison JB, Krishna H, Peterson CB, Lozano G, Zhao H, Do KA, Halperin DM, Agarwal SK, Blau JE, Del Rivero J, Nilubol N, Walter MF, Welch JM, Weinstein LS, Vriens MR, van Leeuwaarde RS, van Treijen MJC, Valk GD, Perrier ND, Hanash SM (2021) A blood-based polyamine signature associated with MEN1 duodenopancreatic neuroendocrine tumor progression. J Clin Endocrinol Metab 106(12):e4969–e4980. https://doi.org/10.1210/clinem/dgab554

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xu J, Li J, Bai C, Xu N, Zhou Z, Li Z et al (2019) Surufatinib in advanced well-differentiated neuroendocrine tumors: a multicenter, single-arm, open-label, phase Ib/II trial. Clin Cancer Res 25:3486–3494. https://doi.org/10.1158/1078-0432.CCR-18-2994

    Article  CAS  PubMed  Google Scholar 

  12. Wang F, Xu X, Ye Z, Qin Y, Yu X, Ji S (2021) Prognostic significance of altered ATRX/DAXX gene in pancreatic neuroendocrine tumors: a meta-analysis. Front Endocrinol 12:691557. https://doi.org/10.3389/fendo.2021.691557

    Article  Google Scholar 

  13. Hong X, Qiao S, Li F, Wang W, Jiang R, Wu H, Chen H, Liu L, Peng J, Wang J, Jia C, Liang X, Dai H, Jiang J, Zhang T, Liao Q, Dai M, Cong L, Han X, Guo D, Liang Z, Li D, Zheng Z, Ye C, Li S, Zhao Y, Wu K, Wu W (2020) Whole-genome sequencing reveals distinct genetic bases for insulinomas and non-functional pancreatic neuroendocrine tumours: leading to a new classification system. Gut 69(5):877–887. https://doi.org/10.1136/gutjnl-2018-317233

    Article  CAS  PubMed  Google Scholar 

  14. Vandamme T, Beyens M, de Beeck KO, Dogan F, van Koetsveld PM, Pauwels P, Mortier G, Vangestel C, de Herder W, Van Camp G, Peeters M, Hofland LJ (2016) Long-term acquired everolimus resistance in pancreatic neuroendocrine tumours can be overcome with novel PI3K-AKT-mTOR inhibitors. Br J Cancer 114(6):650–658. https://doi.org/10.1038/bjc.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hijioka S, Hosoda W, Matsuo K, Ueno M, Furukawa M, Yoshitomi H et al (2017) Rb loss and KRAS mutation are predictors of the response to platinum-based chemotherapy in pancreatic neuroendocrine neoplasm with grade 3: a Japanese multicenter pancreatic NEN-G3 study. Clin Cancer Res 23:4625–4632. https://doi.org/10.1158/1078-0432.CCR-16-3135

    Article  CAS  PubMed  Google Scholar 

  16. Ma ZY, Gong YF, Zhuang HK, Zhou ZX, Huang SZ, Zou YP, Huang BW, Sun ZH, Zhang CZ, Tang YQ, Hou BH (2020) Pancreatic neuroendocrine tumors: a review of serum biomarkers, staging, and management. World J Gastroenterol 26(19):2305–2322. https://doi.org/10.3748/wjg.v26.i19.2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sadanandam A, Wullschleger S, Lyssiotis CA, Grotzinger C, Barbi S, Bersani S et al (2015) A cross-species analysis in pancreatic neuroendocrine tumors reveals molecular subtypes with distinctive clinical, metastatic, developmental, and metabolic characteristics. Cancer Discov 5:1296–1313. https://doi.org/10.1158/2159-8290.CD-15-0068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thorns C, Schurmann C, Gebauer N, Wallaschofski H, Kümpers C, Bernard V, Feller AC, Keck T, Habermann JK, Begum N, Lehnert H, Brabant G (2014) Global microRNA profiling of pancreatic neuroendocrine neoplasias. Anticancer Res 34:2249–2254

    PubMed  Google Scholar 

  19. Vicentini C, Fassan M, D’Angelo E, Corbo V, Silvestris N, Nuovo GJ, Scarpa A (2014) Clinical application of microRNA testing in neuroendocrine tumors of the gastrointestinal tract. Molecules 19:2458–2468

    Article  Google Scholar 

  20. Lee YS, Kim H, Kim HW, Lee JC, Paik KH, Kang J, Kim J, Yoon YS, Han HS, Sohn I, Cho J, Hwang JH (2015) High expression of microRNA-196a indicates poor prognosis in resected pancreatic neuroendocrine tumor. Medicine 94(50):e2224. https://doi.org/10.1097/MD.0000000000002224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khan MS, Kirkwood A, Tsigani T, Garcia-Hernandez J, Hartley JA, Caplin ME, Meyer T (2013) Circulating tumor cells as prognostic markers in neuroendocrine tumors. J Clin Oncol 31:365–372

    Article  CAS  Google Scholar 

  22. Puliani G, Di Vito V, Feola T, Sesti F, Centello R, Pandozzi C, Tarsitano MG, Verrico M, Lenzi A, Isidori AM, Giannetta E, Faggiano A (2021) NEtest: a systematic review focusing on the prognostic and predictive role. Neuroendocrinology. https://doi.org/10.1159/000518873

    Article  PubMed  Google Scholar 

  23. Liu E, Paulson S, Gulati A, Freudman J, Grosh W, Kafer S et al (2019) Assessment of NETest clinical utility in a U.S. registry-based study. Oncologist 24(6):783–790

    Article  Google Scholar 

  24. Bodei L, Kidd MS, Singh A, van der Zwan WA, Severi S, Drozdov IA et al (2018) PRRT genomic signature in blood for prediction of 177Lu-octreotate efficacy. Eur J Nucl Med Mol Imaging 45(7):1155–1169

    Article  CAS  Google Scholar 

  25. Modlin IM, Frilling A, Salem RR, Alaimo D, Drymousis P, Wasan HS et al (2016) Blood measurement of neuroendocrine gene transcripts defines the effectiveness of operative resection and ablation strategies. Surgery 159(1):336–347

    Article  Google Scholar 

  26. Genc CG, Jilesen APJ, Nieveen van Dijkum EJM, Klumpen HJ, van Eijck CHJ, Drozdov I et al (2018) Measurement of circulating transcript levels (NETest) to detect disease recurrence and improve follow-up after curative surgical resection of well-differentiated pancreatic neuroendocrine tumors. J Surg Oncol 118(1):37–48

    Article  CAS  Google Scholar 

  27. Partelli S, Andreasi V, Muffatti F, Schiavo Lena M, Falconi M (2020) Circulating neuroendocrine gene transcripts (NETest): a postoperative strategy for early identification of the efficacy of radical surgery for pancreatic neuroendocrine tumors. Ann Surg Oncol 27(10):3928–3936

    Article  Google Scholar 

  28. Modlin IM (2021) ASO author reflections: a genomic blood test (NEtest) that informs you if the patient has a recurrence at the first postoperative visit. Ann Surg Oncol 28(12):7518–7519. https://doi.org/10.1245/s10434-021-10044-8

    Article  PubMed  Google Scholar 

  29. Modlin IM, Kidd M, Oberg K, Falconi M, Filosso PL, Frilling A et al (2021) Early identification of residual disease after neuroendocrine tumor resection using a liquid biopsy multigenomic mRNA signature (NETest). Ann Surg Oncol 28(12):7506–7517. https://doi.org/10.1245/s10434-021-10021-1

    Article  PubMed  Google Scholar 

  30. Półtorak-Szymczak G, Budlewski T, Furmanek MI, Wierzba W, Sklinda K, Walecki J, Mruk B (2021) Radiological imaging of gastro-entero-pancreatic neuroendocrine tumors. The review of current literature emphasizing the diagnostic value of chosen imaging methods. Front Oncol 11:670233. https://doi.org/10.3389/fonc.2021.670233

    Article  PubMed  PubMed Central  Google Scholar 

  31. Falconi M, Eriksson B, Kaltsas G, Bartsch DK, Capdevila J, Caplin M, Kos-Kudla B, Kwekkeboom D, Rindi G, Klöppel G, Reed N, Kianmanesh R, Jensen RT, Vienna Consensus Conference participants (2016) ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic Neuroendocrine tumors. Neuroendocrinology 103(2):153–171. https://doi.org/10.1159/000443171

    Article  CAS  PubMed  Google Scholar 

  32. Lee L, Ito T, Jensen RT (2018) Imaging of pancreatic neuroendocrine tumors: recent advances, current status, and controversies. Expert Rev Anticancer Ther 18(9):837–880. https://doi.org/10.1080/14737140.2018.1496822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chiti G, Grazzini G, Cozzi D, Danti G, Matteuzzi B, Granata V, Pradella S, Recchia L, Brunese L, Miele V (2021) Imaging of pancreatic neuroendocrine neoplasms. Int J Environ Res Public Health 18(17):8895. https://doi.org/10.3390/ijerph18178895

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kos-Kudła B, Blicharz-Dorniak J, Strzelczyk J, Bałdys-Waligórska A, Bednarczuk T, Bolanowski M et al (2017) Diagnostic and therapeutic guidelines for gastro-entero-pancreatic neuroendocrine neoplasms (recommended by the polish network of neuroendocrine tumours). Endokrynol Polska 68(2):79–110. https://doi.org/10.5603/EP.2017.0015

    Article  Google Scholar 

  35. Sundin, Sundin A, Arnold R, Baudin E, Cwikla JB, Eriksson B, Fanti S et al (2017) ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological. Nucl Med Hybrid Imaging Neuroendocrinol 105(3):212–244. https://doi.org/10.1159/000471879

    Article  CAS  Google Scholar 

  36. Hofland J, Kaltsas G, de Herder WW (2020) Advances in the diagnosis and management of well-differentiated neuroendocrine neoplasms. Endocr Rev 41:371–403. https://doi.org/10.1210/endrev/bnz004

    Article  PubMed Central  Google Scholar 

  37. Putzer D, Gabriel M, Henninger B, Kendler D, Uprimny C, Dobrozemsky G et al (2009) Metastases in patients with neuroendocrine tumor: 68ga-Dotatyr3-Octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med 50:1214–1221. https://doi.org/10.2967/jnumed.108.060236

    Article  PubMed  Google Scholar 

  38. Lo GC, Kambadakone A (2018) MR imaging of pancreatic neuroendocrine tumors. Magnet Reson Imaging Clin N Am 26:391–403. https://doi.org/10.1016/j.mric.2018.03.010

    Article  Google Scholar 

  39. Weikert T, Maas OC, Haas T, Klarhöfer M, Bremerich J, Forrer F et al (2019) Early prediction of treatment response of neuroendocrine hepatic metastases after peptide receptor radionuclide therapy with 90Y-DOTATOC using diffusion weighted and dynamic contrast-enhanced Mri. Contrast Media Mol Imaging. https://doi.org/10.1155/2019/1517208

    Article  PubMed  PubMed Central  Google Scholar 

  40. Han S, Kim JH, Yoo J, Jang S (2021) Prediction of recurrence after surgery based on preoperative MRI features in patients with pancreatic neuroendocrine tumors. Eur Radiol. https://doi.org/10.1007/s00330-021-08316-8

    Article  PubMed  PubMed Central  Google Scholar 

  41. Segaran N, Devine C, Wang M, Ganeshan D (2021) Current update on imaging for pancreatic neuroendocrine neoplasms. World J Clin Oncol 12(10):897–911. https://doi.org/10.5306/wjco.v12.i10.897

    Article  PubMed  PubMed Central  Google Scholar 

  42. Christ E, Antwi K, Fani M, Wild D (2020) Innovative imaging of insulinoma: the end of sampling? A review. Endocr Relat Cancer 27(4):R79–R92. https://doi.org/10.1530/ERC-19-0476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liang W, Yang P, Huang R, Xu L, Wang J, Liu W, Zhang L, Wan D, Huang Q, Lu Y et al (2019) A combined nomogram model to preoperatively predict histologic grade in pancreatic neuroendocrine tumors. Clin Cancer Res 25:584–594. https://doi.org/10.1158/1078-0432.CCR-18-1305

    Article  PubMed  Google Scholar 

  44. Bezzi C, Mapelli P, Presotto L, Neri I, Scifo P, Savi A, Bettinardi V, Partelli S, Gianolli L, Falconi M, Picchio M (2021) Radiomics in pancreatic neuroendocrine tumors: methodological issues and clinical significance. Eur J Nucl Med Mol Imaging 48(12):4002–4015. https://doi.org/10.1007/s00259-021-05338-8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costanza Chiapponi.

Ethics declarations

Interessenkonflikt

C. Chiapponi und C. J. Bruns geben an, dass kein Interessenkonflikt besteht.

Die Patientin, deren MRT und intraoperative Befunde abgebildet wurden, hat sich mit der anonymisierten Veröffentlichung ihres Falles einverstanden erklärt.

Additional information

Redaktion

T. Hackert, Heidelberg

M.W. Büchler, Heidelberg

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiapponi, C., Bruns, C.J. Moderne molekulare und bildgebende Diagnostik bei neuroendokrinen Neoplasien des Pankreas. Chirurgie 93, 731–738 (2022). https://doi.org/10.1007/s00104-022-01645-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-022-01645-4

Schlüsselwörter

Keywords

Navigation