Skip to main content
Log in

Humane embryonale Stammzellen im Kontext internationaler Forschungsaktivitäten

Human embryonic stem cells within the context of international research activity

  • Leitthema: Forschung mit humanen embryonalen Stammzellen
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Forschung an pluripotenten humanen embryonalen Stamm (hES)-Zellen ist ein rasch wachsendes Wissenschaftsgebiet. Aufgrund der Herkunft des Zellmaterials aus frühen menschlichen Embryonen wurden alternative Verfahren zur Gewinnung von pluripotenten Zellen entwickelt. Der Beitrag stellt einige dieser Strategien vor und behandelt darüber hinaus die internationalen Bestrebungen, einheitliche Standards für die Kultivierung, Charakterisierung und Lagerung von hES-Zellen zu etablieren. Ferner werden die weltweiten Tendenzen zur Bildung von Netzwerken auf dem Gebiet der Stammzellforschung sowie Bestrebungen zur Harmonisierung ethischer Standards bei der Arbeit mit hES-Zellen aufgezeigt. Schließlich werden Perspektiven der Verwendung von hES-Zellen in der pharmakologisch-toxikologischen Forschung sowie jüngste Ergebnisse tierexperimenteller Studien mit hES-Zellen diskutiert.

Abstract

Research involving pluripotent human embryonic stem cells (hESCs) is a rapidly growing field of science. Since hESCs originate from early human embryos, alternative methods for producing pluripotent cells have been developed. This article introduces some of those strategies and, in addition, covers international efforts to establish consistent international standards for cultivation, characterization and preservation of hESCs. Furthermore, global trends to form networks in the field of stem cell research as well as endeavors to harmonize ethical standards for hESC research are presented. Finally, potential applications of hESCs in the field of pharmacology/toxicology are discussed as well as recent results of animal studies using hESCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. (1998) Embryonic stem cell lines derived from human blastocysts. Sience 282:1145–1147

    CAS  Google Scholar 

  2. Löser P, Wobus MA (2007) Aktuelle Entwicklungen in der Forschung mit humanen embryonalen Stammzellen. Naturwiss Rundschau 60:229–241

    Google Scholar 

  3. Green RM (2007) Can we develop ethically universal embryonic stem-cell lines? Nat Rev Genet 8:480–485

    Article  PubMed  CAS  Google Scholar 

  4. Chung Y, Klimanskaya I, Becker S, et al. (2008) Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2:113–117

    Article  PubMed  CAS  Google Scholar 

  5. Peura TT, Bosman A, Stojanov T (2007) Derivation of human embryonic stem cell lines. Theriogenology 67:32–42

    Article  PubMed  Google Scholar 

  6. Peura T, Bosman A, Chami O, et al. (2008) Karyotypically normal and abnormal human embryonic stem cell lines derived from PGD-analyzed embryos. Cloning Stem Cells 10:Vorab-Publikation online

  7. Munné S, Velilla E, Colls PM, et al. (2005) Self-correction of chromosomally abnormal embryos in culture and implications for stem cell production. Fertil Steril 84:1328–1334

    Article  PubMed  Google Scholar 

  8. Zhang X, Stojkovic P, Przyborski S, Cooke M (2006) Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24:2669–2676

    Article  PubMed  CAS  Google Scholar 

  9. Landry DW, Zucker HA (2004) Embryonic death and the creation of human embryonic stem cells. J Clin Invest 114:1184–1186

    PubMed  CAS  Google Scholar 

  10. Ben-Yosef D, Malcov M, Eiges R (2008) PGD-derived human embryonic stem cell lines as a powerful tool for the study of human genetic disorders. Mol Cell Endocrinol 282:153–158

    Article  PubMed  CAS  Google Scholar 

  11. Eiges R, Urbach A, Malcov M, et al. (2007) Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cells 1:568–577

    Article  CAS  Google Scholar 

  12. Ben-Nun IF, Benvenisty N (2006) Human embryonic stem cells as a cellular model for human disorders. Mol Cell Endocrinol 252:154–159

    Article  CAS  Google Scholar 

  13. Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21:319–321

    Article  PubMed  CAS  Google Scholar 

  14. Wilmut I, Schnieke AE, McWhir J, et al. (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  PubMed  CAS  Google Scholar 

  15. Lanza RP, Cibelli JB, West MD (1999) Human therapeutic cloning. Nat Med 5:975–977

    Article  PubMed  CAS  Google Scholar 

  16. French AJ, Adams CA, Anderson LS, et al. (2008) Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells 26:485–493

    Article  PubMed  CAS  Google Scholar 

  17. Hurlbut WB (2004) Altered nuclear transfer as a morally acceptable means for the procurement of human embryonic stem cells commissioned working paper. http://www.bioethics.gov/background/hurlbut.html

  18. Meissner A, Jaenisch R (2005) Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts. Nature 439:212–215

    Article  PubMed  Google Scholar 

  19. Revazova ES, Turovets NA, Kochetkova OD, et al. (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9:432–449

    Article  CAS  Google Scholar 

  20. Kim K, Ng K, Rugg-Gunn PJ, Shieh JH (2007) Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 1:346–352

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  22. Yu J, Vodyanik MA, Smuga-Otto K, et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi K, Tanabe K, Ohnuki M, et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  24. Wobus A (2008) Reversibilität des Entwicklungsstatus menschlicher Zellen. Naturwiss Rdsch 61:221–225

    CAS  Google Scholar 

  25. Gebler B, Schöler H (2008) Durchbruch in der Stammzellforschung? Die Reprogrammierung von Körperzellen zu pluripotenten Stammzellen. Übersicht und Ausblick. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz DOI 10.1007/s00103-008-0628-0

  26. Adewumi O, Aflatoonian B, Ahrlund-Richter L, et al. (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25:803–816

    Article  PubMed  CAS  Google Scholar 

  27. Enver T, Soneji S, Joshi C, et al. (2005) Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Gen 14:3129–3140

    CAS  Google Scholar 

  28. Silva SS, Rowntree RK, Mekhoubad S, Lee JT (2008) X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc Natl Acad Sci USA 105:4820–4825

    Article  PubMed  CAS  Google Scholar 

  29. Shen Y, Matsuno Y, Fouse SD, et al. (2008) X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations. Proc Natl Acad Sci USA 105:4709–4714

    Article  PubMed  CAS  Google Scholar 

  30. Oh SK, Kim HS, Ahn HJ, et al. (2005) Derivation and Characterization of New Human Embryonic Stem Cell Lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells 23:211–219

    Article  PubMed  Google Scholar 

  31. Chang KH, Nelson AM, Cao H, et al. (2006) Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood 108:1515–1523

    Article  PubMed  CAS  Google Scholar 

  32. Cowan CA, Klimanskaya I, McMahon J, et al. (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356

    Article  PubMed  CAS  Google Scholar 

  33. Osafune K, Caron L, Borowiak N, et al. (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26:313–315

    Article  PubMed  CAS  Google Scholar 

  34. Yamanaka S, Li J, Kania G, et al. (2008) Pluripotency of embryonic stem cells. Cell Tissue Res 331:5–22

    Article  PubMed  Google Scholar 

  35. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:4535–4562

    Article  Google Scholar 

  36. Sato N, Meijer L, Skaltsounis L, et al. (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  PubMed  CAS  Google Scholar 

  37. Xu C, Rosler E, Jiang J, et al. (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23:315–323

    Article  PubMed  CAS  Google Scholar 

  38. Beattie GM, Lopez AD, Bucay N, et al. (2005) Activin a maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23:489–495

    CAS  Google Scholar 

  39. Brons IG, Smithers LE, Trotter MW, et al. (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    Article  PubMed  CAS  Google Scholar 

  40. Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85:635–678

    Article  PubMed  CAS  Google Scholar 

  41. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  PubMed  CAS  Google Scholar 

  42. Skottman H, Narkilahti S, Hovatta O (2007) Challenges and approaches to the culture of pluripotent human embryonic stem cells. Regen Med 2:265–273

    Article  PubMed  Google Scholar 

  43. Ludwig TE, Levenstein ME, Jones JM, et al. (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187

    Article  PubMed  CAS  Google Scholar 

  44. Crook JM, Peura TT, Kravets L, et al. (2007) The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1:490–494

    Article  PubMed  CAS  Google Scholar 

  45. Deb KD, Sarda K (2008) Human embryonic stem cells: preclinical perspectives. J Translational Med 6:7

    Article  Google Scholar 

  46. Franklin SB, Hunt C, Cornwell G, et al. (2008) hESCCO: development of good practice models for hES cell derivation. Regen Med 3:105–116

    Article  PubMed  Google Scholar 

  47. Améen C, Strehl R, Björquist P, et al. (2008) Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol 65:54–80

    Article  PubMed  Google Scholar 

  48. Rubin LL (2008) Stem cells and drug discovery: the beginning of a new era? Cell 132:549–552

    Article  PubMed  CAS  Google Scholar 

  49. Adler S, Pellizzer C, Hareng L, et al. (2008) First steps in establishing a developmental toxicity test method based on human embryonic stem cells. Toxicol in Vitro 22:200–211

    Article  PubMed  CAS  Google Scholar 

  50. Sartipy P, Björquist P, Strehl R, Hyllner J (2007) The application of human embryonic stem cell technologies to drug discovery. Drug Discov Today 12:688–699

    Article  PubMed  CAS  Google Scholar 

  51. Ek M, Söderdahl T, Küppers-Munther B, Edsbagge J (2007) Expression of drug metabolizing enzymes in hepatocyte-like cells derived from human embryonic stem cells. Biochem Pharmacol 74:496–503

    Article  PubMed  CAS  Google Scholar 

  52. Hay DC, Zhao D, Ross A, Mandalam R, et al. (2007) Direct differentiation of human embryonic stem cells to hepatocyte-like cells exhibiting functional activities. Cloning Stem Cells 9:51–62

    Article  PubMed  CAS  Google Scholar 

  53. Agarwal S, Holton KL, Lanza R (2008) Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells published online 21.2.2008

  54. Welt online, 19.5.2008, http://www.welt.de/welt_print/article2009292/Vorerst_keine_Therapie_mit_embryonalen_Stammzellen_in_den_USA.html

  55. Baker M (2008) FDA to vet embryonic stem cells’ safety. Nature 452:670

    Article  PubMed  CAS  Google Scholar 

  56. Pressemitteilung von Advanced Cell Technology vom 1.2.2008

  57. Hentze H, Graichen R, Colman A (2007) Cell therapy and the safety of embryonic stem cell-derived grafts Trends. Biotechnol 25:24–32

    CAS  Google Scholar 

  58. Taylor CJ, Bolton EM, Pocock S, et al. (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366:2019–2025

    Article  PubMed  Google Scholar 

  59. Boyd AS, Higashi Y, Wood KJ (2005) Transplanting stem cells: potential targets for immune attack. Modulating the immune response against embryonic stem cell transplantation. Adv Drug Deliv Rev 57:1944–1969

    Article  PubMed  CAS  Google Scholar 

  60. Chidgey AP, Layton D, Trounson A, Boyd RL (2008) Tolerance strategies for stem-cell-based therapies. Nature 453:330–337

    Article  PubMed  CAS  Google Scholar 

  61. Cho MS, Lee YE, Kim JY, et al. (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. PNAS 105:3392–3397

    Article  PubMed  CAS  Google Scholar 

  62. Daadi MM, Maag AL, Steinberg GK (2008) Adherent self-renewable human embryonic stem cellderived neural stem cell line: functional engraftment in experimental stroke model. PLoS One, 3, E1644

  63. Caspi O, Huber I, Kehat I, et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50:1884–1893

    Article  PubMed  Google Scholar 

  64. Caspi O, Lesman A, Basevitch Y, et al. (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100:263–272

    Article  PubMed  CAS  Google Scholar 

  65. Laflamme MA, Chen KY, Naumova AV, et al. (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Article  PubMed  CAS  Google Scholar 

  66. Kroon E, Martinson LA, Kadoya K, et al. (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    Article  PubMed  CAS  Google Scholar 

  67. Lu SJ, Feng Q, Caballero S, Chen Y (2007) Generation of functional hemangioblasts from human embryonic stem cells. Nat Methods 4:501–509

    Article  PubMed  CAS  Google Scholar 

  68. Lu B, Wang S, Girman S, et al. (2007) GMP-compliant Human RPE cells derived from embryonic stem cell Lines rescue visual function in a rat model for photoreceptor degeneration. Poster. http://www.advancedcell.com/file_download/225

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Wobus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wobus, A.M., Löser, P. Humane embryonale Stammzellen im Kontext internationaler Forschungsaktivitäten. Bundesgesundheitsbl. 51, 994–1004 (2008). https://doi.org/10.1007/s00103-008-0627-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-008-0627-1

Schlüsselwörter

Keywords

Navigation