Skip to main content
Log in

Small-volume Resuscitation beim hypovolämischen Schock

Konzeption, experimentelle und klinische Ergebnisse — eine Standortbestimmung

Small-volume resuscitation for hypovolemic shock therapy: concept, experimental and clinical results

  • Notfallmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die Bolusinfusion einer hyperosmolaren Kochsalzlösung (4 ml/kg, 7,2–7,5 % NaCl) führt im hypovolämischen Schock zur raschen Normalisierung der zentralen Hämodynamik und zur Restitution der Organperfusion (Small-volume Resuscitation). Nach Ischämie ist die Wiederherstellung der Perfusion in der mikrovaskulären Strombahn vorrangig. Hyperosmolare Lösungen verbessern die Mikrozirkulation durch Reduktion der Endothelzellschwellung und Verminderung der Leukozytenadhäsion am Endothel. Die Wirkmechanismen und die Effizienz hyperosmolarer Lösungen sind durch experimentelle Untersuchungen gut belegt. Hingegen konnte bislang keine der präklinischen Studien die Überlegenheit hyperosmolarer Lösungen hinsichtlich der Überlebensrate sichern. Eine Metaanalyse von 9 präklinisch durchgeführten Studien ergab nach Small-volume Resuscitation gegenüber einer Standard-Primärtherapie mit Ringerlaktat allerdings eine signifikante Reduktion der Letalität (−5,1 %). Vielversprechende neue Indikationsgebiete für hyperosmolare Kochsalzlösungen stellen der Einsatz in der Kardio- und Gefäßchirurgie, bei Brandverletzten, bei Patienten mit Sepsis sowie die gezielte Therapie des post-ischämischen Reperfusionsschadens dar. Die Kombination hyperosmolarer Lösungen mit künstlichen Sauerstoffträgern ist zur Zeit in experimenteller Erprobung.

Abstract

The concept of small-volume resuscitation, the rapid infusion of a small volume (4 ml/kg BW) of hyperosmolar 7.2–7.5 % saline solution for the initial therapy of severe hypovolemia and shock was advocated more than a decade ago. Numerous publications have established that hyperosmolar saline solution can restore arterial blood pressure, cardiac index and oxygen delivery as well as organ perfusion to pre-shock values. Most prehospital studies failed to yield conclusive results with respect to a reduction in overall mortality. A meta-analysis of preclinical studies from North and South America, however, has indicated an increase in survival rate by 5.1 % following small-volume resuscitation when compared to standard of care. Moreover, small-volume resuscitation appears to be of specific impact in patients suffering from head injuries with increased ICP and in severest trauma requiring immediate surgical intervention.

Results from clinical trials in Austria, Germany and France have demonstrated positive effects of hyperosmolar saline solutions when used for fluid loading or fluid substitution in cardiac bypass and in aortic aneurysm surgery, respectively. A less positive perioperative fluid balance, a better hemodynamic stability and improved pulmonary function were reported. In septic patients oxygen consumption could significantly be augmented.

The most important mechanism of action of small-volume resuscitation is the mobilisation of endogenous fluid primarily from oedematous endothelial cells, by which the rectification of shock-narrowed capillaries and the restoration of nutritional blood, flow is efficiently promoted. Moreover, after ischemia reperfusion a reduction in sticking and rolling leukocytes have been found following hyperosmolar saline infusion. Both may be of paramount importance in the long-term preservation of organ function following hypovolemic shock. An increased myocardial contractility in addition to the fluid loading effects of hyperosmolar saline solutions has been suggested as a mechanism of action. This, however, could not be confirmed by pre-load independent measures of myocardial contractility. Some concerns have been raised regarding the use of hyperosmolar saline solutions in patients with a reduced cardiac reserve. A slower speed of infusion and adequate monitoring is recommended for high risk patients.

Recently, hyperosmolar saline solutions in combination with artificial oxygen carriers have been proposed to increase tissue oxygen delivery through enhanced O2 content. This interesting perspective, however, requires further studies to confirm the potential indications for such solutions.

Many hyperosmolar saline colloid solutions have been investigated in the past years, from which a 7,2–7,5% sodium chloride in combination with either 6–10 % dextran 60/70 or 6–10% hydroxyethyl starch 200,000 appear to yield the best benefit-risk ratio. This has led to the registration of the solutions in South America, Austria, the Czech Republic, and is soon awaited for North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Alexander JW, Boyce ST, Babcock GF, et al (1990) The process of microbial translocation Ann Surg 212:496–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allen DG, Smith GL (1987) The effects of hypertonicity on tension and intracellular calcium concentration in ferret ventricular muscle J Physiol (Lond) 383:425–439

    Article  CAS  Google Scholar 

  3. Aranow JS, Fink MP (1996) Determinants of intestinal barrier failure in critical illness Br J Anaesth 77:71–81

    Article  CAS  PubMed  Google Scholar 

  4. Arden WA, Yacko MA, Jay M et al (1993) Scintigraphic evaluation of bacterial translocation during hemorrhagic shock J Surg Res 54: 102–106

    Article  CAS  PubMed  Google Scholar 

  5. Auler JOC, Pereira MHC, Gomide-Amaral RV et al (1987) Hemodynamic effects of hypertonic sodium chloride during surgical treatment of aortic aneurysms Surgery 101: 594–601

    PubMed  Google Scholar 

  6. Baan J, van der Velde ET, de Bruin HG, et al (1984) Continuous measurement of left ventricular volume in animals and humans by conductance catheter Circulation 70: 812–823

    Article  CAS  PubMed  Google Scholar 

  7. Baker CC (1995) Sepsis in the critically ill patient Curr Probl Surg 32: 1018–1083

    Article  Google Scholar 

  8. Biffl WL, Moore EE (1996) Splanchnic ischaemia/reperfusion and multiple organ failure Br J Anaesth 77: 59–70

    Article  CAS  PubMed  Google Scholar 

  9. Boldt J, Zickmann B, Ballesteros M et al (1991) Cardiorespiratory responses to hypertonic saline solution in cardiac operations Ann Thorac Surg 51: 610–615

    Article  CAS  PubMed  Google Scholar 

  10. Boldt J, Zickmann B, Herold C et al (1991) Influence of hypertonic volume replacement on the microcirculation in cardiac surgery Br J Anaesth 67: 595–602

    Article  CAS  PubMed  Google Scholar 

  11. Boldt J, Zickmann B, Thiel A et al (1990) Hyperosmolarer Volumenersatz in der Herzchirurgie Anaesthesist 39: 412–419

    CAS  PubMed  Google Scholar 

  12. Brown JM, Grosso MA, Moore EE (1990) Hypertonic saline and dextran: Impact on cardiac function in the isolated rat heart J Trauma 30: 646–651

    CAS  PubMed  Google Scholar 

  13. Bryant RE, Sutcliffe MC, McGee ZA (1972) Effect of osmolalities comparable to those of the renal medulla on function of human polymorphonuclear leukocytes J Infect Dis 126: 1–10

    Article  CAS  PubMed  Google Scholar 

  14. Carden DL, Smith JK, Korthuis RJ (1990) Neutrophil-mediated microvascular dysfunction in postischemic canine skeletal muscle. Role of granulocyte adherence Circ Res 66: 1436–1444

    Article  CAS  PubMed  Google Scholar 

  15. Chang TMS, Varma R (1992) Effect of a single replacement of one of Ringer lactate, hypertonic saline/dextran, 7 g% albumin, stroma-free hemoglobin, o-raffinose polyhemoglobin or whole blood on the long term survival of unanesthetized rats with lethal hemorrhagic shock after 67% acute blood loss Biomater Artif Cells Artif Organs 20: 503–510

    CAS  Google Scholar 

  16. Chien S (1967) Role of sympathetic nervous system in hemorrhage Physiol Rev 47: 214–288

    CAS  PubMed  Google Scholar 

  17. Christ F, Niklas M, Kreimeier U et al (1996) Perioperative fluid management during abdominal aortic aneurysm repair: therapeutic approaches Prog Appl Microcirc 22: 33–47

    Article  Google Scholar 

  18. Christ F, Niklas M, Kreimeier U et al (1997) A study on the feasibility of hyperosmotic — hyperoncotic solutions given during abdominal aortic aneurysm (AAA) resection. Acta Anaesth Scand 41: 62–70

    Article  CAS  PubMed  Google Scholar 

  19. Constable PD, Muir WW, Binkley PF (1994) Hypertonic saline is a negative inotropic agent in normovolumic dogs Am J Physiol 267: H667–H677

    CAS  PubMed  Google Scholar 

  20. Cryer PE (1980) Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system N Engl J Med 303: 436–444

    Article  CAS  PubMed  Google Scholar 

  21. Crystal GJ, Gurevicius J, Kim SJ, et al (1994) Effects of hypertonic saline solutions in the coronary circulation. Circ Shock 42: 27–38

    CAS  PubMed  Google Scholar 

  22. De Felippe J, Jr. Jimoner J, Velasco IT, Lopes OU (1980) Treatment of refractory hypovolemic shock by 7.5% sodium chloride injections Lancet ii: 1002–1004

    Article  Google Scholar 

  23. Diebel LN, Robinson SL, Wilson RF et al (1993) Splanchnic mucosal perfusion effects of hypertonic versus isotonic resuscitation of hemorrhagic shock Am Surg 59:495–499

    CAS  PubMed  Google Scholar 

  24. Dietz NM, Joyner MJ, Warner MA (1996) Blood substitutes: fluids, drugs, or miracle solutions Anesth Analg 82: 390–405

    CAS  PubMed  Google Scholar 

  25. Dubick MA, Pfeiffer JW, Clifford CB, Runyon DE, Kramer GC (1992) Comparison of intraosseous and intravenous delivery of hypertonic saline/dextran in anesthetized, euvolemic pigs Ann Emerg Med 21: 498–503

    Article  CAS  PubMed  Google Scholar 

  26. Ellinger K, Fahnle M, Schroth M et al (1995) Optimal preoperative titrated dosage of hypertonic-hyperoncotic solutions in cardiac risk patients Shock 3: 167–172

    Article  CAS  PubMed  Google Scholar 

  27. Elliott LA, Ledgerwood AM, Lucas CE et al (1989) Role of Fluosol-DA 20% in prehospital resuscitation Crit Care Med 17: 166–172

    Article  CAS  PubMed  Google Scholar 

  28. Falk JL, Rackow EC, Weil MH (1989) Colloid and crystalloid fluid resuscitation In. Shoemaker WC, Ayres S, Grenvik A, Holbrook PR, Thompson WL (Hrsg) Textbook of critical care. W.B. Saunders, Philadelphia, S 1055–1073

    Google Scholar 

  29. Fine J, Frank ED, Ravin HA et al (1959) The bacterial factor in traumatic shock N Engl J Med 260: 214–220

    Article  CAS  PubMed  Google Scholar 

  30. Freeark RF, Morris RC (1990) Fluid and electrolyte management In: Berk JL, Sampliner JE (Hrsg) Handbook of critical care. Little, Brown & Co. Boston, S 545–560

    Google Scholar 

  31. Frey L, Kesel K, Prückner S et al (1994) Is sodium acetate dextran superior to sodium chloride dextran for small volume resuscitation from traumatic hemorrhagic shock? Anesth Analg 79: 517–524

    Article  CAS  PubMed  Google Scholar 

  32. Frey L, Kreimeier U, Pacheco A et al (1990) Effect of 7.2% saline/10% dextran-60 vs. 7.2% saline/10% hydroxyethylstarch on macro- and microhemodynamics in traumatichemorrhagic hypotension Eur Surg Res 22: 297(Abstract)

    Google Scholar 

  33. Frey L, Meßmer K (1995) Pathophysiologie der Sepsis und des Multiorganversagens Langenb Arch Chir, Forumband Suppl II: 51–56

    Google Scholar 

  34. Frey L, Pacheco A, Meßmer K (1992) Integrität und Vulnerabilität der Darmmukosa In: Peter K, Lawin P, Bein T (Hrsg) INA Bd. 81: Intensivmedizin 1992. Georg Thieme Verlag, Stuttgart, S 30–35

    Google Scholar 

  35. Gazitúa S, Scott JB, Chou CC et al (1969) Effect of osmolarity on canine renal vascular resistance Am J Physiol 217: 1216–1223

    PubMed  Google Scholar 

  36. Gazitúa S, Scott JB, Swindall B et al (1971) Resistance responses to local changes in plasma osmolality in three vascular beds Am J Physiol 220: 384–391

    PubMed  Google Scholar 

  37. Goertz AW, Mehl T, Lindner KH et al (1995) Effect of 7.2% hypertonic saline/6% hetastarch on left ventricular contractility in anesthetized humans Anesthesiology 82: 1389–1395

    Article  CAS  PubMed  Google Scholar 

  38. Guyton AC (1991) The body fluid compartments: extracellular and intracellular fluids; interstitial fluid and edema In: Guyton AC (Hrsg) Textbook of medical physiology. W.B. Saunders, Philadelphia, S 274–285

    Google Scholar 

  39. Haglund U (1994) Gut ischaemia Gut 35: S73–S76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Halvorsen L, Gunther RA, Dubick MA et al (1991) Dose response characteristics of hypertonic saline dextran solutions J Trauma 31: 785–794

    Article  CAS  PubMed  Google Scholar 

  41. Hannemann L, Korell R, Kuss B et al (1990) Effects of hypertonic saline on hemodynamic and oxygen transport-related variables in critically ill patients Eur Surg Res 22: 313(Abstract)

    Google Scholar 

  42. Hannemann L, Korell R, Meier-Hellmann A et al (1993) Hypertone Lösungen auf der Intensivstation Zentralbl Chir 118: 245–249

    CAS  PubMed  Google Scholar 

  43. Ivatury RR, Simon RJ, Islam S et al (1996) A prospective randomized study of end points of resuscitation after major trauma: global oxygen transport indices versus organ-specific gastric mucosal pH J Amer Coll Surgeons 183: 145–154

    CAS  Google Scholar 

  44. Jerome SN, Akimitsu T, Korthuis RJ (1994) Leukocyte adhesion, edema, and development of postischemic capillary no-reflow Am J Physiol 267: H1329–H1336

    CAS  PubMed  Google Scholar 

  45. Jerome SN, Kong L, Korthuis RJ (1994) Microvascular dysfunction in postischemic skeletal muscle J Invest Surg 7: 3–16

    Article  CAS  PubMed  Google Scholar 

  46. Jodal M, Haglund U, Lundgren O (1984) Countercurrent exchange mechanism in the small intestine In: Shepherd AP, Granger DN (Hrsg) Physiology of the intestinal circulation. Raven Press, New York, S 83–97

    Google Scholar 

  47. Johnston KW (1994) Nonruptured abdominal aortic aneurysm: six year follow-up results from the multicenter prospective Canadian aneurysm study J Vasc Surg 20: 163–170

    Article  CAS  PubMed  Google Scholar 

  48. Kass DA, Maughan WL, Guo ZM et al (1987) Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimetnal and theoretical analysis based on pressure-volume relationships Circulation 76: 1422–1436

    Article  CAS  PubMed  Google Scholar 

  49. Kien ND, Kramer GC, White DA (1991) Acute hypotension caused by rapid hypertonic saline infusion in anesthetized dogs Anesth Analg 73: 597–602

    CAS  PubMed  Google Scholar 

  50. Kien ND, Reitan JA, White DA et al (1991) Cardiac contractility and blood flow distribution following resuscitation with 7.5-percent hypertonic saline in anesthetized dogs Circ Shock 35: 109–116

    CAS  PubMed  Google Scholar 

  51. Koch-Weser J (1963) Influence of osmolarity of perfusate on contractility of mammalian myocardium Am J Physiol 204: 957–962

    CAS  PubMed  Google Scholar 

  52. Korthuis RJ, Grisham MB, Granger DN (1988) Leukocyte depletion attenuates vascular injury in postischemic skeletal muscle Am J Physiol 254: H823–H827

    CAS  PubMed  Google Scholar 

  53. Kramer GC, Perron PR, Lindsey DC et al (1986) Small-volume resuscitation with hypertonic saline dextran solution Surgery 100: 239–247

    CAS  PubMed  Google Scholar 

  54. Krausz MM, Kablan M, Rabinovici R et al (1991) Effect of injured vessel size on bleeding following hypertonic saline infusion in uncontrolled hemorrhagic shock in anesthetized rats Circ Shock 35: 9–13

    CAS  PubMed  Google Scholar 

  55. Kreimeier U, Brueckner UB, Schmidt J et al (1990) Instantaneous restoration of regional organ blood flow after severe hemorrhage: effect of small-volume resuscitation with hypertonic-hyperoncotic solutions J Surg Res 49: 493–503

    Article  CAS  PubMed  Google Scholar 

  56. Kreimeier U, Brückner UB, Niemczyk S et al (1990) Hyperosmotic saline dextran for resuscitation from traumatic-hemorrhagic hypotension: effect on regional blood flow Circ Shock 32: 83–99

    CAS  PubMed  Google Scholar 

  57. Kreimeier U, Christ F, Kraft D, Lauterjung L, Niklas M, Peter K, Messmer K (1995) Anaphylaxis due to hydroxyethyl-starch-reactive antibodies Lancet 346: 49–50

    Article  CAS  PubMed  Google Scholar 

  58. Kreimeier U, Thiel M, Messmer K (1996) Hypertonic-hyperoncotic solutions In: Risberg B (Hrsg) Trauma care — an update. Pharmacia & Upjohn Sverige Ab, Stockholm, S 142–153

    Google Scholar 

  59. Kreimeier U, Messmer K (1988) Small-volume resuscitation In: Kox WJ, Gamble J (Hrsg) Fluid resuscitation. Baillière’s Clinical Anaesthesiology, vol 2. Baillière Tindall, London, S 545–577

    Google Scholar 

  60. Kreimeier U, Meßmer K (1996) Prähospitale Flüssigkeitstherapie Anaesthesist 45: 884–899

    Article  CAS  PubMed  Google Scholar 

  61. Kröll W, Pölz W, Schimetta W (1992) Stellenwert von 7,2% NaCl — 10% HES 200/0,5 in der prähospitalen Behandlung einer Hypovolämie? Notarzt 8: 72–75

    Google Scholar 

  62. Lado MG, Sheu SS, Fozzard HA (1984) Effects of tonicity on tension and intracellular sodium and calcium Circ Res 54: 576–585

    Article  CAS  PubMed  Google Scholar 

  63. Lien YHH, Zhou HZ, Job C et al (1992) In vivo 31P NMR study of early cellular responses to hyperosmotic shock in cultured glioma cells Biochimie 74:931–939

    Article  CAS  PubMed  Google Scholar 

  64. Maningas PA (1987) Resuscitation with 7,5% NaCl in 6% dextran-70 during hemorrhagic shock in swine: effects on organ blood flow Crit Care Med 15: 1121–1126

    Article  CAS  PubMed  Google Scholar 

  65. Marshall RJ, Shepherd JT (1959) Effect of injections of hypertonic solutions on blood flow through the femoral artery of the dog Am J Physiol 197: 951–954

    CAS  PubMed  Google Scholar 

  66. Mathru M, Rooney MW, Vengurlekar S et al. (1990) Effect of hypertonic saline resuscitation on myocardial performance in a hemorrhagic shock model: assessment of pressure-volume-loops Anesthesiology 73: A635 (Abstract)

    Google Scholar 

  67. Mattar JA, Weil MH, Shubin H (1973) A study of the hyperosmolal state in critically ill patients Crit Care Med 6: 293

    Article  Google Scholar 

  68. Mattox KL, Maningas PA, Moore EE et al (1991) Prehospital hypertonic saline/dextran infusion for post-traumatic hypotension — the U.S.A. multicenter trial Ann Surg 213: 482–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mazzoni MC, Borgstroem P, Arfors KE et al (1988) Dynamic fluid redistribution in hyperosmotic resuscitation of hypovolemic hemorrhage Am J Physiol 255: H629–H637

    CAS  PubMed  Google Scholar 

  70. Mazzoni MC, Borgström P, Intaglietta M et al (1990) Capillary narrowing in hemorrhagic shock is rectified by hyperosmotic salinedextran reinfusion Circ Shock 31: 407–418

    CAS  PubMed  Google Scholar 

  71. Mazzoni MC, Intaglietta M, Cragoe EJ, Jr., Arfors K-E (1992) Amiloride-sensitive Na+ pathways in capillary endothelial cell swelling during hemorrhagic shock J Appl Physiol 73: 1467–1473

    CAS  PubMed  Google Scholar 

  72. Mazzoni MC, Lundgren E, Arfors KE et al (1989) Volume changes of an endothelial cell monolayer on exposure to anisotonic media J Cell Physiol 140: 272–280

    Article  CAS  Google Scholar 

  73. Menger MD, Lehr HA (1993) Scope and perspectives of intravital microscopy — bridge over from in vitro to in vivo Immunol Today 14: 519–522

    Article  CAS  PubMed  Google Scholar 

  74. Menger MD, Sack FU, Barker JH et al K (1988) Quantitative analysis of microcirculatory disorders after prolonged ischemia in skeletal muscle. Therapeutic effects of prophylactic isovolemic hemodilution Res Exp Med 188: 151–165

    Article  CAS  Google Scholar 

  75. Menger MD, Thierjung C, Hammersen F et al. (1993) Dextran vs. hydroxyethylstarch in inhibition of postischemic leukocyte adherence in striated muscle Circ Shock 41: 248–255

    CAS  PubMed  Google Scholar 

  76. Messmer K (1968) Die Wirkung hypertoner Lösungen bei Ratten im irreversiblen Schock Anaesthesist 17: 295–299

    CAS  PubMed  Google Scholar 

  77. Messmer K (1970) Special aspects of liver circulation In: Boeckl O, Hell E, Steiner H (Hrsg) Possibilities of liver replacement. Urban & Schwarzenberg, München, S 11–24

    Google Scholar 

  78. Messmer K, Kreimeier U (1989) Microcirculatory therapy in shock Resuscitation 18: S51–S61

    Article  PubMed  Google Scholar 

  79. Meßmer K (1967) Intestinale Faktoren im Schock: Intestinaler Kreislauf Langenb Arch Chir 319: 890–909

    Article  Google Scholar 

  80. Meßmer K, Schmidt-Mende M (1971) Die Wirkung hyperosmolarer Lösungen auf die Mesenterialdurchblutung und bei postoperativer Darmatonie Anaesthesist 20: 184–189

    PubMed  Google Scholar 

  81. Mitsuno T, Ohyanagi H, Naito R (1982) Clinical studies of a perfluorochemical whole blood substitute (Fluosol-DA) Ann Surg 195: 60–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moon PF, Kramer GC (1995) Hypertonic saline-dextran resuscitation from hemorrhagic shock induces transient mixed acidosis Crit Care Med 23:323–331

    Article  CAS  PubMed  Google Scholar 

  83. Nakayama S, Kramer GC, Carlsen RC, Holcroft JW (1985) Infusion of very hypertonic saline to bled rats — membrane potentials and fluid shifts J Surg Res 38: 180–186

    Article  CAS  PubMed  Google Scholar 

  84. Nakayama S, Sibley L, Gunther RA et al (1984) Small-volume resuscitation with hypertonic saline (2,400 mOsm/liter) during hemorrhagic shock Circ Shock 13: 149–159

    CAS  PubMed  Google Scholar 

  85. Nieuwenhuijzen GAP, Deitch EA, Goris RJA (1996) Infection, the gut and the development of the multiple organ dysfunction syndrome Eur J Surg 162: 259–273

    CAS  PubMed  Google Scholar 

  86. Nolte D, Bayer M, Lehr HA et al (1992) Attenuation of postischemic microvascular disturbances in striated muscle by hyperosmolar saline dextran Am J Physiol 263: H1411–H1416

    CAS  PubMed  Google Scholar 

  87. Peitzmann AB, Billiar TR, Harbrecht BG et al. (1995) Hemorragic shock Curr Probl Surg 32: 932–1001

    Article  Google Scholar 

  88. Penfield WG (1919) The treatment of severe and progressive hemorrhage by intravenous injections Am J Physiol 48: 121–132

    CAS  Google Scholar 

  89. Prien T, Jhülig B, Wüsten R et al (1993) Hyperton-hyperonkotischer Volumenersatz (7,5% NaCl/10% Hydroxyethylstärke 200.000/0,5) bei Patienten mit Koronararterienstenosen Zentralbl Chir 118: 257–266

    CAS  PubMed  Google Scholar 

  90. Prough DS, Whitley JM, Jaylor CL et al (1991) Small-volume resuscitation from hemorrhagic shock in dogs: effects on systemic hemodynamics and systemic blood flow Crit Care Med 19: 364–372

    Article  CAS  PubMed  Google Scholar 

  91. Rabinovici R, Neville LF, Rudolph AS, Feuerstein G (1995) Hemoglobin-based oxygen-carrying resuscitation fluids [editorial] Crit Care Med 23: 801–804

    Article  CAS  PubMed  Google Scholar 

  92. Rabinovici R, Rudolph AS, Vernick J, Feuerstein G (1993) A new salutary resuscitative fluid: liposome encapsulated hemoglobin/hypertonic saline solution J Trauma 35: 121–127

    Article  CAS  PubMed  Google Scholar 

  93. Ramires JAF, Serrano CV, Cesar LAM et al (1992) Acute hemodynamic effects of hypertonic (7.5%) saline infusion in patients with cardiogenic shock due to right ventricular infarction Circ Shock 37: 220–225

    CAS  PubMed  Google Scholar 

  94. Reed LL, Manglano R, Martin M et al (1991) The effect of hypertonic saline resuscitation on bacterial translocation after hemorrhagic shock in rats Surgery 110: 685–690

    CAS  PubMed  Google Scholar 

  95. Rocha e Silva M, Braga GA, Prist R et al (1992) Physical and physiological characteristics of pressure-driven hemorrhage Am J Physiol 263: H1402–H1410

    PubMed  Google Scholar 

  96. Rocha e Silva M, Negraes GA, Soares AM, Pontieri V, Loppnow L (1986) Hypertonic resuscitation from severe hemorrhagic shock: patterns of regional circulation Circ Shock 19: 165–175

    CAS  PubMed  Google Scholar 

  97. Rocha e Silva M, Velasco IT, Nogueira da Silva RI, et al (1987) Hyperosmotic sodium salts reverse severe hemorrhagic shock: other solutes do not Am J Physiol 253: H751–H762

    CAS  PubMed  Google Scholar 

  98. Scalia SV, Taheri PA, Force S et al (1992) Mesenteric microcirculatory changes in nonlethal hemorrhagic shock: the role of resuscitation with balanced electrolyte or hypertonic saline/dextran J Trauma 33: 321–325

    Article  CAS  PubMed  Google Scholar 

  99. Schechner JS, Braverman IM (1992) Synchronous vasomotion in the human cutaneous microvasculature provides evidence for central modulation Microvascular Res 44: 27–32

    Article  CAS  Google Scholar 

  100. Schmidt JA, Intaglietta M, Borgström P (1992) Periodic hemodynamics in skeletal muscle during local arterial pressure reduction J Appl Physiol 73: 1077–1083

    CAS  PubMed  Google Scholar 

  101. Segal JM, Phang PT, Walley KR (1992) Low-dose dopamine hastens onset of gut ischemia in a porcine model of hemorrhagic shock J Appl Physiol 73: 1159–1164

    CAS  PubMed  Google Scholar 

  102. Shackford SR, Sise MJ, Fridlund PH et al (1983) Hypertonic sodium lactate versus lactated Ringer’s solution for intravenous fluid therapy in operations on the abdominal aorta Surgery 94: 41–51

    CAS  PubMed  Google Scholar 

  103. Shepherd AP (1982) Metabolic control of intestinal oxygenation and blood flow FASEB J 41: 2084–2089

    CAS  Google Scholar 

  104. Silbert S (1926) The treatment of thromboangiitis obliterans by intravenous injection of hypertonic salt solution: preliminary report JAMA 86: 1759–1761

    Article  Google Scholar 

  105. Smith GJ, Kramer GC, Perron P et al (1985) A comparison of several hypertonic solutions for resuscitation of bled sheep J Surg Res 39: 517–528

    Article  CAS  PubMed  Google Scholar 

  106. Steinbauer M, Harris A, Hoffmann T, Messmer K (1996) Pharmacological effects of dextrans on the postischemic leukocyte-endothelial interaction In: Messmer K (Hrsg) Compromised perfusion. Prog Appl Microcirc vol 22. Karger-Verlag, Basel, S 114–125

    Google Scholar 

  107. Stern SA, Dronen SC, McGoron AJ et al (1995) Effect of supplemental perfluorocarbon administration on hypotensive resuscitation of severe uncontrolled hemorrhag Am J Emerg Med 13: 269–275

    Article  CAS  PubMed  Google Scholar 

  108. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio Circ Res 32: 314–322

    Article  CAS  PubMed  Google Scholar 

  109. Thiel M, Buessecker F, Chouker A et al (1997) Effect of hypertonic saline on the expression of adhesion molecules of human polymorphonuclear leukocytes Shock 7, Suppl:44(Abstract)

    Article  Google Scholar 

  110. Tokyay R, Zeigler ST, Traber DL et al (1993) Postburn gastrointestinal vasoconstriction increases bacterial and endotoxin translocation J Appl Physiol 74: 1521–1527

    Article  CAS  PubMed  Google Scholar 

  111. Torres Filho IP, Contaifer D, Jr., Garcia SSL et al (1990) Effects of hypertonic solution on the mesenteric microcirculation Eur Surg Res 22: 294 (Abstract)

    Google Scholar 

  112. Vacca G, Papillo B, Battaglia A et al (1996) The effects of hypertonic saline solution on coronary blood flow in anaesthetized pigs J Physiol (Lond) 491: 843–851

    Article  CAS  Google Scholar 

  113. Vassar MJ, Fischer RR O’Brien PE et al (1993) A multicenter trial for resuscitation of injured patients with 7.5% sodium chloride — the effect of added dextran 70 Arch Surg 128: 1003–1013

    Article  CAS  PubMed  Google Scholar 

  114. Vassar MJ, Holcroft JW (1992) Use of hypertonic-hyperoncotic fluids for resuscitation of trauma patients J Intensive Care Med 7: 189–198

    Article  Google Scholar 

  115. Velasco IT, Pontieri V, Rocha e Silva M, Jr., Lopes OU (1980) Hyperosmotic NaCl and severe hemorrhagic shock Am J Physiol 239: 664–673

    Google Scholar 

  116. Veroli P, Benhamou D (1992) Comparison of hypertonic saline (5%), isotonic saline and Ringer’s lactate solutions for fluid preloading before lumbar extradural anaesthesia Br J Anaesth 69: 461–464

    Article  CAS  PubMed  Google Scholar 

  117. Wade CE, Kramer GC, Grady JJ et al (1994) Efficacy of hypertonic saline/dextran (HSD) or hypertonic saline (HS) on survival following traumatic injury: a meta-analysis Abstracts of the International Conference on Hypertonic Resuscitation SALT 6, Teton Village, Wyoming, June 2–3, 1994 33(Abstract)

  118. Walsh JC, Kramer GC (1991) Resuscitation of hypovolemic sheep with hypertonic saline/dextran: the role of dextran Circ Shock 34: 336–343

    CAS  PubMed  Google Scholar 

  119. Welte M, Goresch T, Frey L et al (1995) Hypertonic saline dextran does not increase cardiac contractile function during small volume resuscitation from hemorrhagic shock in anesthetized pigs Anesth Analg 80: 1099–1107

    CAS  PubMed  Google Scholar 

  120. Welte M, Lackermeier P, Habler O et al (1997) Effect of hypertonic saline/dextran on post-stenotic myocardial perfussion, metabolism, and function during resuscitation from hemorrhagic shock in anaesthetized pigs Shock 7: 119 130

    Article  Google Scholar 

  121. Welte M, Messmer K (1996) Cardiac function in small volume resuscitation In: Messmer K (Hrsg) Compromised perfusion. Karger, Basel, S 1–19

    Google Scholar 

  122. Welte M, Zwissler B, Frey L et al (1996) Hypovolemic shock and cardiac contractility: assessment by end-systolic pressure-volume relations Res Exp Med 196: 87–104

    Article  CAS  Google Scholar 

  123. Wildenthal K, Adcock RC, Crie JS et al (1975) Negative inotropic influence of hyperosmotic solutions on cardiac muscle Am J Physiol 229: 1505–1509

    CAS  PubMed  Google Scholar 

  124. Wildenthal K, Mierzwiak DS, Mitchell JH (1969) Acute effects of increased serum osmolality on left ventricular performance Am J Physiol 216:898–904

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr. med. Dr. med. h.c. mult. K. Meßmer zum 60. Geburtstag gewidmet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreimeier, U., Christ, F., Frey, L. et al. Small-volume Resuscitation beim hypovolämischen Schock. Anaesthesist 46, 309–328 (1997). https://doi.org/10.1007/s001010050406

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001010050406

Schlüsselwörter

Key words

Navigation