Skip to main content

Schlafstörungen bei Ärzten im Schichtdienst

Sleep disorders among physicians on shift work

Zusammenfassung

Schlafmangel und Schlafstörungen bei Ärzten im Schichtdienst können sowohl direkte gesundheitliche Folgen als auch indirekte, durch Leistungsminderung negative Auswirkungen auf die Patientensicherheit haben. Selbst bei optimaler äußerer Anpassung an Schichtarbeit und Schlafausgleich tagsüber ist Schlafmangel bei Ärzten häufig. Ziel dieser Arbeit ist es, Ursachen und Konsequenzen von Schlafstörungen bei Ärzten zu diskutieren sowie Verbesserungsmaßnahmen zur Adaptation bei Schichtarbeit aufzuzeigen.

Risikofaktoren für die Entwicklung von Schlafstörungen bei Ärzten reichen von genetischen Faktoren bei ca. 15 % der Bevölkerung, Alter über 50 Jahre, komorbid vorhandenen, jedoch oft nichtdiagnostizierten schlafmedizinischen Erkrankungen, Alkoholmissbrauch bzw. Schlafmangel durch Mehrfachbelastungen in Klinik (mit Schichtarbeit), Forschung, Lehre und Familie. Mehrere Studien weisen auf eine erhöhte Fehlerrate von übermüdeten Ärzten hin. Schichtarbeiter haben ein erhöhtes Risiko für psychiatrische, kardiovaskuläre und möglicherweise auch für Krebserkrankungen. Es bestehen Zusammenhänge zwischen kurzer Schlafdauer und gestörter Nahrungsaufnahme, Diabetes mellitus, Adipositas, Bluthochdruck oder koronarer Herzerkrankung. Nikotin- und Alkoholkonsum sind bei Schichtarbeitern häufiger. Sozioökonomisch zeigen sich erhöhte Krankenstände und Unfallraten bei Ärzten auf dem Nachhauseweg, insbesondere nach Nachtschichten.

Um die Leistungsfähigkeit zu verbessern und Ermüdungserscheinungen zu vermindern, sind Kurzschlafepisoden („naps“) während der Schicht, evtl. in Kombination mit Koffein, wirksame Coping-Strategien. Wenn die Naps zu einem Zeitpunkt mit niedrigem zirkadianen Schlafdruck stattfinden, sind sie weniger effektiv, da die Betroffenen nicht immer einschlafen können. Helle Beleuchtung und blaues Licht unterstützen die Wachheit während der Schicht. Bereits auf dem Nachhauseweg von der Schicht sollte direkte Sonnenlichtexposition auf die Retina vermieden werden, z. B. durch Tragen dicht abschließender, sehr dunkler Sonnenbrillen oder von Brillen mit orangenen Gläsern. Nach Schichtende sollte in sehr dunkler Umgebung geschlafen werden, um die endogene Melatoninsekretion nicht zu behindern, was als Nachtsignal gilt und die Schlafkontinuität fördern soll. Schlafstörungen können mit richtigem Umgang mit Licht, Verhaltensstrategien und Umgebungsstrategien therapiert werden, um Schlafdefizite möglichst gut zu kompensieren. Erschöpfung durch Schlafmangel kann nur durch Schlafen konsequent therapiert werden.

Abstract

Sleep disorders in physicians who perform shift work can result in increased risks of health problems that negatively impact performance and patient safety. Even those who cope well with shift work are likely to suffer from sleep disorders. The aim of this manuscript is to discuss possible causes, contributing factors and consequences of sleep disorders in physicians and to identify measures that can improve adaptation to shift work and treatment strategies for shift work-associated sleep disorders. The risk factors that influence the development of sleep disorders in physicians are numerous and include genetic factors (15 % of the population), age (> 50 years), undiagnosed sleep apnea,, alcohol abuse as well as multiple stress factors inherent in clinical duties (including shift work), research, teaching and family obligations. Several studies have reported an increased risk for medical errors in sleep-deprived physicians. Shift workers have an increased risk for psychiatric and cardiovascular diseases and shift work may also be a contributing factor to cancer. A relationship has been reported not only with sleep deprivation and changes in food intake but also with diabetes mellitus, obesity, hypertension and coronary heart disease. Nicotine and alcohol consumption are more frequent among shift workers. Increased sickness and accident rates among physicians when commuting (especially after night shifts) have a socioeconomic impact. In order to reduce fatigue and to improve performance, short naps during shiftwork or naps plus caffeine, have been proposed as coping strategies; however, napping during adverse circadian phases is less effective, if not impossible when unable to fall asleep. Bright and blue light supports alertness during a night shift. After shiftwork, direct sunlight exposure to the retina can be avoided by using dark sunglasses or glasses with orange lenses for commuting home. The home environment for daytime sleeping after a night shift should be very dark to allow endogenous melatonin secretion, which is a night signal and supports continuous sleep. Sleep disorders can be treated with timed light exposure, as well as behavioral and environmental strategies to compensate for sleep deprivation. Fatigue due to sleep deprivation can only be systematically treated with sleep.

This is a preview of subscription content, access via your institution.

Abb. 1

Notes

  1. 1.

    New York Times 03.03.2009, Washington Post 28.11.2006.

  2. 2.

    http://www.cet.org/cet-online-store/protective-eyewear/ (unabhängige, nichtkommerzielle Organisation).

Literatur

  1. 1.

    Adams P (2013) The breast cancer conundrum. Bull World Health Organ 91:626–627

    PubMed  Article  Google Scholar 

  2. 2.

    American Academy of Sleep Medicine (2005) The international classification of sleep disorders: diagnostic and coding manual (ICSD-2). American Academy of Sleep Medicine, Westchester

  3. 3.

    Asch DA, Parker RM (1988) The Libby Zion case. One step forward or two steps backward? N Engl J Med 318:771–775

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Barnes RG, Forbes MJ, Arendt J (1998) Shift type and season affect adaptation of the 6-sulphatoxymelatonin rhythm in offshore oil rig workers. Neurosci Lett 252:179–182

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Boggild H, Knutsson A (1999) Shift work, risk factors and cardiovascular disease. Scand J Work Environ Health 25:85–99

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Boivin DB, James FO (2005) Light treatment and circadian adaptation to shift work. Ind Health 43:34–48

    PubMed  Article  Google Scholar 

  7. 7.

    Boivin DB, Tremblay GM, James FO (2007) Working on atypical schedules. Sleep Med 8:578–589

    PubMed  Article  Google Scholar 

  8. 8.

    Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    CAS  PubMed  Google Scholar 

  9. 9.

    Caldwell JA, Mallis MM, Caldwell JL et al (2009) Fatigue countermeasures in aviation. Aviat Space Environ Med 80:29–59

    PubMed  Article  Google Scholar 

  10. 10.

    Cassidy CJ, Griffiths E, Smith AF (2004) „Safety in sleep“: anaesthetists, patients and the European Working Time Directive. Anaesthesia 59:841–843

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Chung SA, Wolf TK, Shapiro CM (2009) Sleep and health consequences of shift work in women. J Womens Health (Larchmt) 18:965–977

    Article  Google Scholar 

  12. 12.

    Czeisler CA (2009) Medical and genetic differences in the adverse impact of sleep loss on performance: ethical considerations for the medical profession. Trans Am Clin Climatol Assoc 120:249–285

    PubMed Central  PubMed  Google Scholar 

  13. 13.

    Davis S, Mirick DK, Stevens RG (2001) Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 93:1557–1562

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Dijk DJ, Czeisler CA (1994) Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 166:63–68

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Drake CL, Roehrs T, Richardson G et al (2004) Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep 27:1453–1462

    PubMed  Google Scholar 

  16. 16.

    Eastman CI, Stewart KT, Mahoney MP et al (1994) Dark goggles and bright light improve circadian rhythm adaptation to night-shift work. Sleep 17:535–543

    CAS  PubMed  Google Scholar 

  17. 17.

    Fahey CZP (2008) Circadian rhythm disorders. Cambridge University Press, New York

  18. 18.

    Falkenstetter T, Frauscher B, Anderer P et al (2010) Erhöhte Tagesschläfrigkeit in Österreich. Somnologie 14:15–22

    Article  Google Scholar 

  19. 19.

    Figueiro MG, Rea MS, Bullough JD (2006) Does architectural lighting contribute to breast cancer? J Carcinog 5:20

    PubMed Central  PubMed  Article  Google Scholar 

  20. 20.

    Folkard S, Akerstedt T (2004) Trends in the risk of accidents and injuries and their implications for models of fatigue and performance. Aviat Space Environ Med 75:A161–A167

    PubMed  Google Scholar 

  21. 21.

    Gaba DM, Howard SK (2002) Patient safety: fatigue among clinicians and the safety of patients. N Engl J Med 347:1249–1255

    PubMed  Article  Google Scholar 

  22. 22.

    Gander P, Purnell H, Garden A, Woodward A (2007) Work patterns and fatigue-related risk among junior doctors. Occup Environ Med 64:733–738

    PubMed Central  PubMed  Article  Google Scholar 

  23. 23.

    Groemer G, Gruber V, Bishop S et al (2010) Human performance data in a high work load environment during the simulated Mars expedition ‚‚AustroMars’’. Acta Astronaut 66:780–787

    CAS  Article  Google Scholar 

  24. 24.

    Hansen J (2006) Risk of breast cancer after night- and shift work: current evidence and ongoing studies in Denmark. Cancer Causes Control 17:531–537

    PubMed  Article  Google Scholar 

  25. 25.

    Harrison J (2014) The ailing anaesthetist. Anaesthesia 69:9–13

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Högl B (2010) Schlaf und Schlafstörungen. Lehofer M, Pail G, Kasper S (Hrsg) Chronopsychiatrie. http://www.chronopsychiatrie.at/Chronopsychiatrie.pdf

  27. 27.

    Horne J, Anderson C, Platten C (2008) Sleep extension versus nap or coffee, within the context of ‚sleep debt’. J Sleep Res 17:432–436

    PubMed  Article  Google Scholar 

  28. 28.

    Howard SK, Rosekind MR, Katz JD, Berry AJ (2002) Fatigue in anesthesia: implications and strategies for patient and provider safety. Anesthesiology 97:1281–1294

    PubMed  Article  Google Scholar 

  29. 29.

    Imaki M, Hatanaka Y, Ogawa Y et al (2002) An epidemiological study on relationship between the hours of sleep and life style factors in Japanese factory workers. J Physiol Anthropol Appl Human Sci 21:115–120

    PubMed  Article  Google Scholar 

  30. 30.

    Knutson KL, Van Cauter E (2008) Associations between sleep loss and increased risk of obesity and diabetes. Ann N Y Acad Sci 1129:287–304

    PubMed  Article  Google Scholar 

  31. 31.

    Kolstad HA (2008) Nightshift work and risk of breast cancer and other cancers – a critical review of the epidemiologic evidence. Scand J Work Environ Health 34:5–22

    PubMed  Article  Google Scholar 

  32. 32.

    Landrigan CP, Rothschild JM, Cronin JW et al (2004) Effect of reducing interns‘ work hours on serious medical errors in intensive care units. N Engl J Med 351:1838–1848

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Lee K, Chen PP, Tse LA (2013) Insomnia and associated factors among anaesthetists in Hong Kong. Anaesth Intensive Care 41:750–758

    CAS  PubMed  Google Scholar 

  34. 34.

    Leger D, Bayon V, Ohayon MM et al (2014) Insomnia and accidents: cross-sectional study (EQUINOX) on sleep-related home, work and car accidents in 5293 subjects with insomnia from 10 countries. J Sleep Res 23:143–152

    PubMed  Article  Google Scholar 

  35. 35.

    Maier C, Iwunna J, Soukup J, Scherbaum N (2010) Addicted anaesthetists. Anasthesiol Intensivmed Notfallmed Schmerzther 45:648–654

    PubMed  Article  Google Scholar 

  36. 36.

    Mansukhani MP, Kolla BP, Surani S et al (2012) Sleep deprivation in resident physicians, work hour limitations, and related outcomes: a systematic review of the literature. Postgrad Med 124:241–249

    PubMed  Article  Google Scholar 

  37. 37.

    McCormick F, Kadzielski J, Landrigan CP et al (2012) Surgeon fatigue: a prospective analysis of the incidence, risk, and intervals of predicted fatigue-related impairment in residents. Arch Surg 147:430–435

    PubMed  Article  Google Scholar 

  38. 38.

    Meisinger C, Heier M, Loewel H (2005) Sleep disturbance as a predictor of type 2 diabetes mellitus in men and women from the general population. Diabetologia 48:235–241

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Michalsen A, Hillert A (2011) Burn-out in anesthesia and intensive care medicine. Part 1. Clarification and critical evaluation of the term. Anaesthesist 60:23–30

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Michalsen A, Hillert A (2011) Burnout in anesthesia and intensive care medicine. Part 2: Epidemiology and importance for the quality of care. Anaesthesist 60:31–38

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Mion G, Ricouard S (2007) Mortality related to anesthesia and sleep deprivation in medical doctors. Anesthesiology 107:512

    PubMed  Article  Google Scholar 

  42. 42.

    Mitchell PJ, Hoese EK, Liu L et al (1997) Conflicting bright light exposure during night shifts impedes circadian adaptation. J Biol Rhythms 12:5–15

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Monk T (2005) Shift work: basic principles. Elsevier Saunders, Philadelphia

  44. 44.

    Newman LA, Walker MT, Brown RL et al (2003) Melanopsin forms a functional short-wavelength photopigment. Biochemistry 42:12734–12738

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Nielson C, Wingett D (2004) Intensive care and invasive ventilation in the elderly patient, implications of chronic lung disease and comorbidities. Chron Respir Dis 1:43–54

    CAS  PubMed  Google Scholar 

  46. 46.

    Novak RD, Auvil-Novak SE (1996) Focus group evaluation of night nurse shiftwork difficulties and coping strategies. Chronobiol Int 13:457–463

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Nurok M, Czeisler CA, Lehmann LS (2010) Sleep deprivation, elective surgical procedures, and informed consent. N Engl J Med 363:2577–2579

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Ohida T, Kamal AM, Uchiyama M et al (2001) The influence of lifestyle and health status factors on sleep loss among the Japanese general population. Sleep 24:333–338

    CAS  PubMed  Google Scholar 

  49. 49.

    Olson EJ, Drage LA, Auger RR (2009) Sleep deprivation, physician performance, and patient safety. Chest 136:1389–1396

    PubMed  Article  Google Scholar 

  50. 50.

    Patterson PD, Weaver MD, Frank RC et al (2012) Association between poor sleep, fatigue, and safety outcomes in emergency medical services providers. Prehosp Emerg Care 16:86–97

    PubMed Central  PubMed  Article  Google Scholar 

  51. 51.

    Pilcher JJ, Lambert BJ, Huffcutt AI (2000) Differential effects of permanent and rotating shifts on self-report sleep length: a meta-analytic review. Sleep 23:155–163

    CAS  PubMed  Google Scholar 

  52. 52.

    Redfern N, Gallagher P (2014) The ageing anaesthetist. Anaesthesia 69:1–5

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Retey JV, Adam M, Khatami R et al (2007) A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin Pharmacol Ther 81:692–698

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Richter E, Blasco V, Antonini F et al (2014) Sleep disorders among French anaesthesiologists and intensivists working in public hospitals: a self-reported electronic survey. Eur J Anaesthesiol 31:1-6

    Article  Google Scholar 

  55. 55.

    Roenneberg T, Remi J, Merrow M (2010) Modeling a circadian surface. J Biol Rhythms 25:340–349

    PubMed  Article  Google Scholar 

  56. 56.

    Rothschild JM, Keohane CA, Rogers S et al (2009) Risks of complications by attending physicians after performing nighttime procedures. JAMA 302:1565–1572

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Schwartz JR, Roth T (2006) Shift work sleep disorder: burden of illness and approaches to management. Drugs 66:2357–2370

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Sharkey KM, Fogg LF, Eastman CI (2001) Effects of melatonin administration on daytime sleep after simulated night shift work. J Sleep Res 10:181–192

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  59. 59.

    Sinha A, Singh A, Tewari A (2013) The fatigued anesthesiologist: a threat to patient safety? J Anaesthesiol Clin Pharmacol 29:151–159

    PubMed Central  PubMed  Article  Google Scholar 

  60. 60.

    Spiegel K (2008) Sleep loss as a risk factor for obesity and diabetes. Int J Pediatr Obes 3(Suppl 2):27–28

    PubMed  Article  Google Scholar 

  61. 61.

    Spiegel K, Knutson K, Leproult R et al (2005) Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol (1985) 99:2008–2019

    Google Scholar 

  62. 62.

    Spiegel K, Tasali E, Leproult R, Van Cauter E (2009) Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol 5:253–261

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Steele MT, Ma OJ, Watson WA et al (1999) The occupational risk of motor vehicle collisions for emergency medicine residents. Acad Emerg Med 6:1050–1053

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Susanszky E, Szanto Z (2012) How do physicians sleep and dream? Lege Artis Med 22:53–58

    PubMed  Google Scholar 

  65. 65.

    Tasali E, Leproult R, Ehrmann DA, Van Cauter E (2008) Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci U S A 105:1044–1049

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  66. 66.

    Tucker P, Byrne A (2014) The tiring anaesthetist. Anaesthesia 69:6–9

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Van Cauter E, Polonsky KS, Scheen AJ (1997) Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 18:716–738

    Google Scholar 

  68. 68.

    Walsh J, Dement W, Dinges D (2005) Principles and parctice of sleep medicine. Elsevier Saunders, Philadelphia

  69. 69.

    Whitmore JN, French J, Fischer JR (2001) Psychophysiological effects of a brief nocturnal light exposure. J Hum Ergol 30:267–272

    CAS  Google Scholar 

  70. 70.

    Wright SW, Lawrence LM, Wrenn KD et al (1998) Randomized clinical trial of melatonin after night-shift work: efficacy and neuropsychologic effects. Ann Emerg Med 32:334–340

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Yaggi HK, Araujo AB, McKinlay JB (2006) Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes care 29:657–661

    PubMed  Article  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenskonflikt V. Wenzel und O. Schlafer geben an, dass kein Interessenkonflikt besteht; mögliche Interessenskonflikte B. Högl: Honorare für Vorträge, Advisory Board oder Consulting von Mundipharma, UCB, GlaxoSmithKline, Otsuka, Boehringer Ingelheim, Pfizer, Sanofi, Respironics; Reiseunterstützung von Habel Medizintechnik und Vivisol, Stipendium an die Abteilung: UCB. Dieser Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Högl.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schlafer, O., Wenzel, V. & Högl, B. Schlafstörungen bei Ärzten im Schichtdienst. Anaesthesist 63, 844–851 (2014). https://doi.org/10.1007/s00101-014-2374-z

Download citation

Schlüsselwörter

  • Insomnie
  • Zirkadianer Rhythmus
  • Adaptation
  • Risikofaktoren
  • Melatonin

Keywords

  • Insomnia
  • Circadian rhythm
  • Adaptation
  • Risk factors
  • Melatonin