Skip to main content
Log in

Beatmung und Volumentherapie beim akuten Lungenversagen

Auswirkung auf Gasaustausch und Hämodynamik

Mechanical ventilation and fluid management in acute lung injury

Effects on gas exchange and hemodynamics

  • Medizin aktuell
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Ein lungenschonendes maschinelles Beatmungsregime mit Drucklimitierung, kleinen Tidalvolumina (6–8 ml/kg ideales KG), adäquatem positiven endexspiratorischen Druck („positive end-expiratory pressure”, PEEP) und frühen Rekrutierungsmanövern ist von zentraler Bedeutung für die erfolgreiche Behandlung des akuten Lungenversagens („acute lung injury“, ALI). Bei hämodynamisch stabilen Patienten mit ALI hat sich darüber hinaus eine restriktive Volumengabe als vorteilhaft erwiesen. Ziele beider Maßnahmen sind die Aufrechterhaltung einer ausreichenden Oxygenierung bei gleichzeitiger Minimierung der Beatmungsspitzendrücke sowie die Reduktion pulmonaler Atelektasen und Ödeme. Die hämodynamischen Nebenwirkungen bestehen hauptsächlich in einem Abfall des Herzzeitvolumens (HZV) und konsekutiv des arteriellen Blutdrucks. Das Risiko einer Organminderperfusion scheint jedoch zugunsten des möglichen Therapieerfolgs gerechtfertigt, der eine Reduktion von hypoxischer pulmonaler Vasokonstriktion und Hyperkapnie beinhaltet. Die damit verbundene Verringerung des pulmonalarteriellen Druckes trägt zur Entlastung des rechten Ventrikels und zur Stabilisierung der Hämodynamik bei.

Abstract

Basic therapy of acute lung injury (ALI) covers a pressure-limited lung protective mechanical ventilation with low tidal volumes (6–8 ml/kg ideal body weight), adequate positive end-expiratory pressure (PEEP) combined with early recruitment maneuvers and a restrictive fluid management (in hypoproteinemic patients preferably with albumin and diuretics). These measures aim at providing sufficient oxygenation while simultaneously minimizing airway pressure, atelectasis and edema formation. The main hemodynamic effects are a decrease in cardiac output and in systemic arterial pressure potentially reducing organ perfusion. However, successful therapy reduces hypoxic pulmonary vasoconstriction and hypercapnia, thus lowering pulmonary artery pressure, unloading the right ventricle, and stabilising hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  2. Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  PubMed  CAS  Google Scholar 

  3. American Thoracic Society (2004) Evidence-based colloid use in the critically ill: American Thoracic Society Consensus Statement. Am J Respir Crit Care Med 170:1247–1259

    Article  Google Scholar 

  4. Bernard GR, Artigas A, Brigham KL et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    PubMed  CAS  Google Scholar 

  5. Borges JB, Okamoto VN, Matos GF et al (2006) Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 174:268–278

    Article  PubMed  Google Scholar 

  6. Dantzker DR, Lynch JP, Weg JG (1980) Depression of cardiac output is a mechanism of shunt reduction in the therapy of acute respiratory failure. Chest 77:636–642

    Article  PubMed  CAS  Google Scholar 

  7. Falke KJ, Pontoppidan H, Kumar A et al (1972) Ventilation with end-expiratory pressure in acute lung disease. J Clin Invest 51:2315–2323

    Article  PubMed  CAS  Google Scholar 

  8. Finfer S, Bellomo R, Boyce N et al (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256

    Article  PubMed  CAS  Google Scholar 

  9. Jardin F, Gueret P, Dubourg O et al (1985) Two-dimensional echocardiographic evaluation of right ventricular size and contractility in acute respiratory failure. Crit Care Med 13:952–956

    Article  PubMed  CAS  Google Scholar 

  10. Jardin F, Vieillard-Baron A (2003) Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med 29:1426–1434

    Article  PubMed  Google Scholar 

  11. Kumar A, Falke KJ, Geffin B et al (1970) Continuous positive-pressure ventilation in acute respiratory failure. N Engl J Med 283:1430–1436

    PubMed  CAS  Google Scholar 

  12. Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18:319–321

    Article  PubMed  CAS  Google Scholar 

  13. Lapinsky SE, Mehta S (2005) Bench-to-bedside review: recruitment and recruiting maneuvers. Crit Care 9:60–65

    Article  PubMed  Google Scholar 

  14. Lim SC, Adams AB, Simonson DA et al (2004) Transient hemodynamic effects of recruitment maneuvers in three experimental models of acute lung injury. Crit Care Med 32:2378–2384

    Article  PubMed  Google Scholar 

  15. Mancebo J, Fernández R, Blanch L et al (2006) A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 173:1233–1239

    Article  PubMed  Google Scholar 

  16. Martin GS, Moss M, Wheeler AP et al (2005) A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med 33:1681–1687

    Article  PubMed  CAS  Google Scholar 

  17. Meade MO, Cook DJ, Guyatt GH et al, Lung Open Ventilation Study Investigators (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645

    Article  PubMed  CAS  Google Scholar 

  18. Nunn JF, Lumb AB (2000) Cardiovascular effects of positive pressure ventilation. In: Lumb AB (ed) Nunn’s applied respiratory physiology, 5 edn. Butterworth-Heinemann, Oxford, pp 611–615

  19. Oczenski W, Schwarz S, Fitzgerald RD (2004) Clinical impact of recruitment maneuvers in patients with acute respiratory distress syndrome. Anasthesiol Intensivmed Notfallmed Schmerzther 39:463–470

    Article  PubMed  CAS  Google Scholar 

  20. Pelosi P, Cadringher P, Bottino N et al (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159:872–880

    PubMed  CAS  Google Scholar 

  21. Quinlan GJ, Martin GS, Evans TW (2005) Albumin: biochemical properties and therapeutic potential. Hepatology 41:1211–1219

    Article  PubMed  CAS  Google Scholar 

  22. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  23. Rubenfeld GD, Caldwell E, Peabody E et al (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693

    Article  PubMed  CAS  Google Scholar 

  24. Staub NC (1978) Pulmonary edema: physiologic approaches to management. Chest 74:559–564

    Article  PubMed  CAS  Google Scholar 

  25. Vieillard-Baron A, Schmitt JM, Augarde R et al (2001) Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications and prognosis. Crit Care Med 29:1551–1555

    Article  PubMed  CAS  Google Scholar 

  26. Vieillard-Baron A, Charron C, Caille V et al (2007) Prone positioning unloads the right ventricle in severe ARDS. Chest 132:1440–1446

    Article  PubMed  Google Scholar 

  27. Wiedemann HP, Wheeler AP, Bernard GR et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenskonflikt

Der korrespondierende Autor gibt an, dass kein Interessenskonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kaisers.

Additional information

S. Bercker und T. Busch haben zu gleichen Teilen zu dieser Arbeit beigetragen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bercker, S., Busch, T., Donaubauer, B. et al. Beatmung und Volumentherapie beim akuten Lungenversagen. Anaesthesist 58, 410–414 (2009). https://doi.org/10.1007/s00101-009-1525-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-009-1525-0

Schlüsselwörter

Keywords

Navigation