Skip to main content
Log in

Pulmonalarterienkatheter

Einsatz in Anästhesie und Intensivmedizin

Pulmonary artery catheter in anaesthesiology and intensive care medicine

  • CME Weiterbildung · Zertifizierte Fortbildung
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Der Einsatz des Pulmonalarterienkatheters (PAK) zur erweiterten hämodynamischen Überwachung wird in der konservativen und operativen Medizin in den letzten Jahren zunehmend kritisch hinterfragt. Seit Mitte der 90er-Jahre zeigte sich, dass der Einsatz des Pulmonalarterienkatheters die Letalität und Morbidität schwerstkranker Patienten nicht positiv beeinflusst. In einigen Untersuchungen fand sich sogar eine höhere Letalität bei Patienten, die mit dem PAK überwacht wurden. Daher wurden in den letzten Jahren randomisierte Untersuchungen mit adäquater Fallzahl bei Patienten mit ARDS, Herzinsuffizienz, Multiorganversagen und Hochrisikochirurgie durchgeführt. In der Mehrzahl der aktuellen Untersuchungen zeigte sich kein positiver Einfluss des Monitorings mit dem PAK auf das Überleben und die Komplikationsrate. Der vorliegende Beitrag gibt eine Übersicht über Messparameter der aktuellen PAK-Generation, mögliche Alternativen und die aktuelle Studienlage zum Einsatz des PAK in der Anästhesie und Intensivmedizin

Abstract

The indication for the use of the pulmonary artery catheter (PAC) in high-risk patients is still a matter of discussion. Observational studies suggested that the use of the PAC did not result in decreased mortality but may even lead to increased mortality and morbidity. Therefore, a number of randomized controlled trials have been performed throughout recent years in patients suffering from sepsis/ARDS, congestive heart failure, multi-organ failure and those undergoing high-risk non-cardiac surgery. The majority of recent randomized studies failed to demonstrate any benefit of the PAC with respect to mortality and morbidity. However, the use of the PAC was also regularly not associated with an increase in morbidity and/or mortality. This review gives an overview of measurement parameters obtained by the current generation of PACs, alternatives to the PAC and recent studies on the use of the PAC in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization (2003) Practice guidelines for pulmonary artery catheterization: an updated report by the American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization. Anesthesiology 99: 988–1014

    Article  PubMed  Google Scholar 

  2. Bein B, Worthmann F, Tonner PH et al. (2004) Comparison of esophageal Doppler, pulse contour analysis, and real-time pulmonary artery thermodilution for the continuous measurement of cardiac output. J Cardiothorac Vasc Anesth 18: 185–189

    Article  PubMed  Google Scholar 

  3. Binanay C, Califf RM, Hasselblad V et al. (2005) Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 294: 1625–1633

    Article  PubMed  Google Scholar 

  4. Bishop MH, Shoemaker WC, Appel PL et al. (1995) Prospective, randomized trial of survivor values of cardiac index, oxygen delivery, and oxygen consumption as resuscitation endpoints in severe trauma. J Trauma 38: 780–787

    PubMed  Google Scholar 

  5. Bottiger BW, Rauch H, Bohrer H et al. (1995) Continuous versus intermittent cardiac output measurement in cardiac surgical patients undergoing hypothermic cardiopulmonary bypass. J Cardiothorac Vasc Anesth 9: 405–411

    Article  PubMed  Google Scholar 

  6. Boyd O, Grounds RM, Bennett ED (1993) A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 270: 2699–2707

    Article  PubMed  Google Scholar 

  7. Buhre W, Buhre K, Kazmaier S et al. (2001) Assessment of cardiac preload by indicator dilution and transoesophageal echocardiography. Eur J Anaesthesiol 18: 662–667

    Article  PubMed  Google Scholar 

  8. Buhre W, Kazmaier S, Sonntag H, Weyland A (2001) Changes in cardiac output and intrathoracic blood volume: a mathematical coupling of data? Acta Anaesthesiol Scand 45: 863–867

    Article  PubMed  Google Scholar 

  9. Buhre W, Weyland A, Kazmaier S et al. (1999) Comparison of cardiac output assessed by pulse-contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting. J Cardiothorac Vasc Anesth 13: 437–440

    Article  PubMed  Google Scholar 

  10. Buhre W, Weyland A, Schorn B et al. (1999) Changes in central venous pressure and pulmonary capillary wedge pressure do not indicate changes in right and left heart volume in patients undergoing coronary artery bypass surgery. Eur J Anaesthesiol 16: 11–17

    Article  PubMed  Google Scholar 

  11. Cohen MG, Kelly RV, Kong DF et al. (2005) Pulmonary artery catheterization in acute coronary syndromes: insights from the GUSTO IIb and GUSTO III trials. Am J Med 118: 482–488

    Article  PubMed  Google Scholar 

  12. Connors AF Jr, Speroff T, Dawson NV et al. (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276: 889–897

    Article  PubMed  Google Scholar 

  13. Dark PM, Singer M (2004) The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med 30: 2060–2066

    Article  PubMed  Google Scholar 

  14. De Simone R, Wolf I, Mottl-Link S et al. (2005) Intraoperative assessment of right ventricular volume and function. Eur J Cardiothorac Surg 27: 988–993

    Article  PubMed  Google Scholar 

  15. Dellinger RP, Carlet JM, Masur H et al. (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32: 858–873

    Article  PubMed  Google Scholar 

  16. Domino KB, Bowdle TA, Posner KL et al. (2004) Injuries and liability related to central vascular catheters: a closed claims analysis. Anesthesiology 100: 1411–1418

    Article  PubMed  Google Scholar 

  17. Dueck MH, Klimek M, Appenrodt S et al. (2005) Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology 103: 249–257

    Article  PubMed  Google Scholar 

  18. Gan TJ, Soppitt A, Maroof M et al. (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97: 820–826

    Article  PubMed  Google Scholar 

  19. Gattinoni L, Brazzi L, Pelosi P et al. (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333: 1025–1032

    Article  PubMed  Google Scholar 

  20. Hall JB (2005) Searching for evidence to support pulmonary artery catheter use in critically ill patients. JAMA 294: 1693–1694

    Article  PubMed  Google Scholar 

  21. Harvey S, Harrison DA, Singer M et al. (2005) Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 366: 472–477

    Article  PubMed  Google Scholar 

  22. Hayes MA, Timmins AC, Yau EH et al. (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330: 1717–1722

    Article  PubMed  Google Scholar 

  23. Hofer CK, Furrer L, Matter-Ensner S et al. (2005) Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography. Br J Anaesth 94: 748–755

    Article  PubMed  Google Scholar 

  24. Kumar A, Anel R, Bunnell E et al. (2004) Preload-independent mechanisms contribute to increased stroke volume following large volume saline infusion in normal volunteers: a prospective interventional study. Crit Care 8: R128–136

    Article  PubMed  Google Scholar 

  25. Linton RA, Band DM, Haire KM (1993) A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth 71: 262–266

    PubMed  Google Scholar 

  26. McKendry M, McGloin H, Saberi D et al. (2004) Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. Bmj 329: 258

    Article  PubMed  Google Scholar 

  27. Mielck F, Buhre W, Hanekop G et al. (2003) Comparison of continuous cardiac output measurements in patients after cardiac surgery. J Cardiothorac Vasc Anesth 17: 211–216

    Article  PubMed  Google Scholar 

  28. Neuhauser C, Muller M, Brau M et al. (2002) Partial CO(2) rebreathing technique versus thermodilution: measurement of cardiac output before and after operations with extracorporeal circulation. Anaesthesist 51: 25–633

    Google Scholar 

  29. Pearse R, Dawson D, Fawcett J et al. (2005) Changes in central venous saturation after major surgery, and association with outcome. Crit Care 9: R694–699

    Article  PubMed  Google Scholar 

  30. Pearse R, Dawson D, Fawcett J et al. (2005) Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 9: R687–693

    Article  PubMed  Google Scholar 

  31. Pinsky MR, Vincent JL (2005) Let us use the pulmonary artery catheter correctly and only when we need it. Crit Care Med 33: 1119–1122

    Article  PubMed  Google Scholar 

  32. Poelaert J, Schmidt C, Van Aken H et al. (1999) A comparison of transoesophageal echocardiographic Doppler across the aortic valve and the thermodilution technique for estimating cardiac output. Anaesthesia 54: 128–136

    Article  PubMed  Google Scholar 

  33. Polonen P, Ruokonen E, Hippelainen M et al. (2000) A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 90: 1052–1059

    PubMed  Google Scholar 

  34. Procaccini B, Clementi G (2004) Pulmonary artery catheterization in 9071 cardiac surgery patients: a review of complications. Ital Heart J Suppl 5: 891–899

    PubMed  Google Scholar 

  35. Reinhart K, Kuhn HJ, Hartog C, Bredle DL (2004) Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 30: 1572–1578

    Article  PubMed  Google Scholar 

  36. Reuter DA, Goetz AE (2005) Measurement of cardiac output. Anaesthesist 54: 1135–1151; quiz 1152–1133

    Article  PubMed  Google Scholar 

  37. Rhodes A, Bennett ED (2004) Early goal-directed therapy: an evidence-based review. Crit Care Med 32: S448–450

    Article  PubMed  Google Scholar 

  38. Rhodes A, Cusack RJ, Newman PJ et al. (2002) A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med 28: 256–264

    Article  PubMed  Google Scholar 

  39. Richard C, Warszawski J, Anguel N et al. (2003) Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 290: 2713–2720

    Article  PubMed  Google Scholar 

  40. Rivers E, Nguyen B, Havstad S et al. (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377

    Article  PubMed  Google Scholar 

  41. Sakr Y, Vincent JL, Reinhart K et al. (2005) Use of the pulmonary artery catheter is not associated with worse outcome in the ICU. Chest 128: 2722–2731

    Article  PubMed  Google Scholar 

  42. Sandham JD, Hull RD, Brant RF et al. (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348: 5–14

    Article  PubMed  Google Scholar 

  43. Shah MR, Hasselblad V, Stevenson LW et al. (2005) Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA 294: 1664–1670

    Article  PubMed  Google Scholar 

  44. Shoemaker WC, Appel PL, Kram HB et al. (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94: 1176–1186

    PubMed  Google Scholar 

  45. Shoemaker WC, Appel PL, Waxman K et al. (1982) Clinical trial of survivors‘ cardiorespiratory patterns as therapeutic goals in critically ill postoperative patients. Crit Care Med 10: 398–403

    PubMed  Google Scholar 

  46. Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. Bmj 315: 909–912

    PubMed  Google Scholar 

  47. Swan HJ, Ganz W, Forrester J et al. (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283: 447–451

    PubMed  Google Scholar 

  48. Versprille A (1984) Pulmonary vascular resistance. A meaningless variable. Intensive Care Med 10: 51–53

    Article  PubMed  Google Scholar 

  49. Wakeling HG, McFall MR, Jenkins CS et al. (2005) Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth 95: 634–642

    Article  PubMed  Google Scholar 

  50. Yu M, Levy MM, Smith P et al. (1993) Effect of maximizing oxygen delivery on morbidity and mortality rates in critically ill patients: a prospective, randomized, controlled study. Crit Care Med 21: 830–838

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf eine Verbindung mit folgender Firma/Firmen hin: Der korrespondierende Autor ist Mitglied des Medical Advisory Board der Pulsion Medical Systems AG und hat von der Fa. Pulsion Honorare für Vorträge erhalten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Buhre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Waal, E.E.C., de Rossi, L. & Buhre, W. Pulmonalarterienkatheter. Anaesthesist 55, 713–730 (2006). https://doi.org/10.1007/s00101-006-1037-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-006-1037-0

Schlüsselwörter

Keywords

Navigation