Skip to main content

Advertisement

Log in

Does MIPO of fractures of the distal femur result in more rotational malalignment than ORIF? A retrospective study

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

Intraoperative control of rotational malalignment poses a big challenge for surgeons when using modern MIPO (minimally invasive plate osteosynthesis) techniques. We hypothesized that distal femoral fractures treated with MIPO technique are more often fixed in malrotation than those treated with open reduction internal fixation (ORIF).

Methods

In this retrospective study, we identified 20 patients who met the inclusion criteria and agreed to take part in the study. In ten patients MIPO was applied, in the other ten ORIF was used. Mean age was 44.8 (19–71 years). Functional status was assessed using clinical scores (Harris Hip Score, WOMAC Hip, KS Score, WOMAC Knee, Kujala Score). Rotational alignment was assessed with magnetic resonance imaging and compared to the opposite leg.

Results

We discovered a significant difference in the mean rotational difference between the MIPO group (14.3°) and the ORIF group (5.2°). Functionally, patients in the ORIF group outperformed patients in the MIPO group in all clinical scoring systems although no one proved to be statistically significant. MIPO technique was associated with significantly more rotational malalignment compared to ORIF in distal femur fracture fixation. However, implant failure and nonunion was more common in the ORIF group, with a revision rate of 3 versus 1 in the ORIF group. Clinical scoring did not significantly different between both groups.

Conclusion

Taking into account the undisputable advantages of minimally invasive surgery, improved teaching of methods to avoid malrotation as well as regular postoperative investigations to detect any malrotation should be advocated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Krettek C. Evolution of minimally invasive plate osteosynthesis (MIPO) in the femur. Injury. 2002;32(Spppl 3):SC14–23.

    Google Scholar 

  2. Frigg R, Appenzeller A, Christensen R, Frenk A, Gilbert S, Schavan R. The development of the distal femur Less Invasive Stabilization System (LISS). Injury. 2001;32:24–31.

    Article  Google Scholar 

  3. Markmiller M, Konrad G, Südkamp N. Femur-LISS and distal femoral nail for fixation of distal femoral fractures. Clin Orthop Relat Res. 2004;426:252–7.

    Article  Google Scholar 

  4. Schandelmaier P, Blauth M, Krettek C. Osteosynthese distaler Femurfrakturen mit dem Less Invasive Stabilizing System (LISS). Oper OrthopTraumatol. 2001;13:178–97.

    Google Scholar 

  5. Schütz M, Schäfer M, Bail H, Wenda K, Haas N. Neue Osteosyntheseverfahren bei distalen Femurfrakturen. ZentralblChir. 2005;130:307–13.

    Google Scholar 

  6. Goesling T, Frenk A, Appenzeller A, Garapati R, Marti A, Krettek C. LISS PLT: design, mechanical and biomechanical characteristics. Injury. 2003;34(Suppl 1):A11–5.

    Article  PubMed  Google Scholar 

  7. Schütz M, Müller M, Krettek C, Höntzsch D, Regazzoni P, Ganz R, et al. Minimally invasive fracture stabilization of distal femoral fractures with the LISS: a prospective multicenter study. Results of a clinical study with special emphasis on difficult cases. Injury. 2001;32(Suppl 3):SC48–54.

    Article  PubMed  Google Scholar 

  8. Schatzker J, Home G, Waddell J. The Toronto experience with the supracondylar fracture of the femur, 1966–72. Injury. 1974;6:113–28.

    Article  CAS  PubMed  Google Scholar 

  9. Neer CS, Grantham SA, Shelton ML. Supracondylar fracture of the adult femur. A study of one hundred and ten cases. J Bone Joint Surg Am. 1967;49:591–613.

    Article  PubMed  Google Scholar 

  10. Krettek C, Miclau T, Grün O, Schandelmaier P, Tscherne H. Intraoperative control of axes, rotation and length in femoral and tibial fractures. Technical note. Injury. 1998;29(Suppl 3):C29–39.

    Article  PubMed  Google Scholar 

  11. Buckley R, Mohanty K, Malish D. Lower limb malrotation following MIPO technique of distal femoral and proximal tibial fractures. Injury. 2011;42:194–9.

    Article  CAS  PubMed  Google Scholar 

  12. Gugenheim JJ, Probe RA, Brinker MR. The effects of femoral shaft malrotation on lower extremity anatomy. J Orthop Trauma. 2004;18:658.

    Article  PubMed  Google Scholar 

  13. van der Schoot DK, Den Outer AJ, Bode PJ, Obermann WR, van Vugt AB. Degenerative changes at the knee and ankle related to malunion of tibial fractures. 15-year follow-up of 88 patients. J Bone Joint Surg Br. 1996;78:722–5.

    PubMed  Google Scholar 

  14. Collinge CA, Gardner MJ, Crist BD. Pitfalls in the application of distal femur plates for fractures. J Orthop Trauma. 2011;25:695–706.

    Article  PubMed  Google Scholar 

  15. Katz J, Melzack R. Measurement of pain. Surg Clin N Am. 1999;79:231–52.

    Article  CAS  PubMed  Google Scholar 

  16. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. 1988;15:1833–40.

    CAS  PubMed  Google Scholar 

  17. Thumboo J. Validation of the Western Ontario and McMaster University Osteoarthritis Index in Asians with Osteoarthritis in Singapore. Osteoarthr Cartil. 2001;9:440–6.

    Article  CAS  PubMed  Google Scholar 

  18. Harris WH. Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am. 1969;51:737–55.

    Article  CAS  PubMed  Google Scholar 

  19. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeanmart L, Baert AL, Wackenheim A. Computer tomography of neck, chest, spine, and limbs (atlas of pathological computer tomography; V. 3). 1st ed. Berlin: Springer; 1983.

    Google Scholar 

  21. Jaarsma R, Pakvis D, Verdonschot N, Biert J, Van Kampen A. Rotational malalignment after intramedullary nailing of femoral fractures. J Orthop Trauma. 2004;18:403.

    Article  CAS  PubMed  Google Scholar 

  22. Bråten MM, Terjesen TT, Rossvoll II. Femoral anteversion in normal adults. Ultrasound measurements in 50 men and 50 women. Acta Orthop Scand. 1992;63:29–32.

    Article  PubMed  Google Scholar 

  23. Bråten M, Terjesen T, Rossvoll I. Torsional deformity after intramedullary nailing of femoral shaft fractures. Measurement of anteversion angles in 110 patients. J Bone Joint Surg Br. 1993;75:799–803.

    Article  PubMed  Google Scholar 

  24. Kregor PJ, Stannard JA, Zlowodzki M, Cole PA. Treatment of distal femur fractures using the less invasive stabilization system: surgical experience and early clinical results in 103 fractures. J Orthop Trauma. 2004;18:509–20.

    Article  PubMed  Google Scholar 

  25. Weight M. Early Results of the Less Invasive Stabilization System for mechanically unstable fractures of the distal femur (AO/OTA types A2, A3, C2, and C3). J Orthop Trauma. 2004;69(8):1169–76.

    Google Scholar 

  26. Murphy SB, Simon SR, Kijewski PK, Wilkinson RH, Griscom NT. Femoral anteversion. J Bone Joint Surg Am. 1987;69:1169–76.

    Article  CAS  PubMed  Google Scholar 

  27. Strecker W, Keppler P, Gebhard F, Kinzl L. Length and torsion of the lower limb. J Bone Joint Surg Br. 1997;79:1019–23.

    Article  CAS  PubMed  Google Scholar 

  28. Starker M, Hanusek S, Rittmeister M, Thoma W. Validation of computerized tomography antetorsion angle measurement of the femur. Z Orthop Ihre Grenzgeb. 1998;136:420–7.

    Article  CAS  PubMed  Google Scholar 

  29. Kuo TY. Measurement of femoral anteversion by biplane radiography and computed tomography imaging: comparison with an anatomic reference. Investig Radiol. 2003;86(8):1100–4.

    Google Scholar 

  30. Jaarsma RL. Rotational malalignment after fractures of the femur. J Bone Joint Surg Br Vol. 2004;18(7):397–402.

    Google Scholar 

  31. Puloski SS, Romano CC, Buckley RR, Powell JJ. Rotational malalignment of the tibia following reamed intramedullary nail fixation. J Orthop Trauma. 2004;18:397–402.

    Article  CAS  PubMed  Google Scholar 

  32. Keppler PP, Strecker WW, Kinzl LL. Analysis of leg geometry—standard techniques and normal values. Chirurg. 1998;69:1141–52.

    Article  CAS  PubMed  Google Scholar 

  33. Pietsch M, Hofmann S. Wertigkeit der radiologischen Bildgebung beim Kniegelenk für den Orthopäden. Radiologe. 2006;46:55–64.

    Article  CAS  PubMed  Google Scholar 

  34. Kolb W, Guhlmann H, Windisch C, Marx F, Kolb K, Koller H. Fixation of distal femoral fractures with the Less Invasive Stabilization System: a minimally invasive treatment with locked fixed-angle screws. J Trauma Injury Infect Crit Care. 2008;65:1425–34.

    Article  Google Scholar 

  35. Kregor PJ, Stannard J, Zlowodzki M, Cole PA, Alonso J. Distal femoral fracture fixation utilizing the Less Invasive Stabilization System (L.I.S.S.): the technique and early results. Injury. 2001;32(Suppl 3):SC32–47.

    Article  PubMed  Google Scholar 

  36. Sennerich T, Sutter P, Ritter G, Zapf S. Computerized tomography follow-up of the antetorsion angle after femoral shaft fractures in the adult. Unfallchirurg. 1992;95:301–5.

    CAS  PubMed  Google Scholar 

  37. Kempf I, Grosse A, Beck G. Closed locked intramedullary nailing. Its application to comminuted fractures of the femur. J Bone Joint Surg Am. 1985;67:709–20.

    Article  CAS  PubMed  Google Scholar 

  38. Johnson KD, Greenberg M. Comminuted femoral shaft fractures. Orthop Clin N Am. 1987;18:133–47.

    CAS  Google Scholar 

  39. Jaarsma RL, Verdonschot N, Venne R, Kampen A. Avoiding rotational malalignment after fractures of the femur by using the profile of the lesser trochanter: an in vitro study. ArchOrthop Trauma Surg. 2005;125:184–7.

    Article  CAS  Google Scholar 

  40. Kim JJ, Kim E, Kim KY. Predicting the rotationally neutral state of the femur by comparing the shape of the contralateral lesser trochanter. Orthopedics. 2001;24:1069–70.

    CAS  PubMed  Google Scholar 

  41. Tornetta P, Ritz G, Kantor A. Femoral torsion after interlocked nailing of unstable femoral fractures. J Trauma Injury Infect Crit Care. 1995;38:213–9.

    Article  Google Scholar 

  42. Gösling T, Oszwald M, Kendoff D, Citak M, Krettek C, Hufner T. Computer-assisted antetorsion control prevents malrotation in femoral nailing: an experimental study and preliminary clinical case series. ArchOrthop Trauma Surg. 2009;129:1521–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lill.

Ethics declarations

An institutional ethical committee approved the study and all patients gave written informed consent.

Conflict of interest

Markus Lill, Rene Attal, Ansgar Rudisch, Marius Wick, Michael Blauth and Martin Lutz declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lill, M., Attal, R., Rudisch, A. et al. Does MIPO of fractures of the distal femur result in more rotational malalignment than ORIF? A retrospective study. Eur J Trauma Emerg Surg 42, 733–740 (2016). https://doi.org/10.1007/s00068-015-0595-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-015-0595-8

Keywords

Navigation