Skip to main content

Advertisement

Log in

Matched-pair dosimetric comparison of cardiac radiation exposure between deep-inspiration breath-hold whole-breast radiation therapy with Active Breathing Coordinator and interstitial multicatheter high-dose-rate brachytherapy as accelerated partial breast irradiation in adjuvant treatment of left-sided breast cancer after breast-conserving surgery

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

To compare dosimetrically the radiation exposure to heart, left ventricle (LV), and left anterior descending artery (LAD) between whole-breast radiotherapy (WBRT) with Active Breathing Coordinator (ABC; ABC-WBRT) and interstitial multicatheter high-dose-rate (HDR) brachytherapy as accelerated partial breast irradiation (ABPI; imHDR-APBI) for left-sided breast cancer (BCA) after breast-conserving surgery (BCS).

Materials and methods

Between January 2016 and December 2019, 32 and 20 patients were treated with ABC-WBRT (63 Gy/2.25 Gy) and imHDR-APBI (32 Gy/4 Gy), respectively. Among them a matched-pair analysis was performed according to tumor location (clock position) before BCS as well as planning target volume of imHDR-APBI and boost volume of ABC-WBRT. This yielded 17 pairs of patients for whom dosimetric parameters for heart, LV, and LAD were evaluated. The Mann–Whitney test was used for comparison after adjusting for equivalent dose in 2‑Gy fractions (EQD2). In addition, a second analysis of ABC-WBRT to 40.05 Gy in 15 fractions was performed in order to account for the EQD2 difference between the 63-Gy ABC-WBRT and the imHDR-APBI protocol.

Results

Tumor location for the 17 pairs of patients relative to breast quadrant was as follows: upper outer 8, lower outer 5, upper inner 3, and lower inner 1. There was no difference regarding mean heart dose (MHD) and V5, whereas D25%, D45%, V10, and V25 significantly favored imHDR-APBI. Likewise, mean dose- and V5-LV did not differ, while Dmax- and V23-LV were significantly higher for ABC-WBRT. For LAD, Dmax, D25%, and V30 significantly favored imHDR-APBI without differences for mean dose and V40. When comparing imHDR-APBI with the 40.05 Gy ABC-WBRT schedule, MHD and mean dose LV were significantly lower in favor of ABC-WBRT.

Conclusion

ABC-WBRT and imHDR-APBI yield similar low heart and LV exposure for left-sided BCA after BCS, whereas LAD can be better spared with imHDR-APBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Darby S, McGale P, Correa C et al (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378:1707–1716

    Article  CAS  Google Scholar 

  2. Roychoudhuri R, Robinson D, Putcha V et al (2007) Increased cardiovascular mortality more than fifteen years after radiotherapy for breast cancer: a population-based study. BMC Cancer 7:9

    Article  Google Scholar 

  3. Taylor CW, Nisbet A, McGale P et al (2007) Cardiac exposures in breast cancer radiotherapy: 1950s-1990s. Int J Radiat Oncol Biol Phys 69:1484–1495

    Article  Google Scholar 

  4. Taylor CW, Wang Z, Macaulay E et al (2015) Exposure of the heart in breast cancer radiation therapy: a systematic review of heart doses published during 2003 to 2013. Int J Radiat Oncol Biol Phys 93:845–853

    Article  Google Scholar 

  5. Darby SC, Ewertz M, McGale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998

    Article  CAS  Google Scholar 

  6. Duma M, Baumann R, Budach W et al (2019) Heart-sparing radiotherapy techniques in breast cancer patients: a recommendation of the breast cancer expert panel of the German society of radiation oncology (DEGRO). Strahlenther Onkol 195:861–871

    Article  Google Scholar 

  7. Bergom C, Currey A, Desai N et al (2018) Deep inspiration breath hold: techniques and advantages for cardiac sparing during breast cancer irradiation. Front Oncol 8:87

    Article  Google Scholar 

  8. Boda-Heggemann J, Knopf A, Simeonova-Chergou A et al (2016) Deep inspiration breath hold-based radiation therapy: a clinical review. Int J Radiat Oncol Biol Phys 94:478–492

    Article  Google Scholar 

  9. Strnad V, Ott OJ, Hildebrandt G et al (2016) 5‑year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: a randomised, phase 3, non-inferiority trial. Lancet 387:229–238

    Article  Google Scholar 

  10. Witt JS, Gao RW, Sudmeier LJ et al (2019) Low cardiac and left anterior descending coronary artery dose achieved with left-sided multicatheter interstitial-accelerated partial breast irradiation. Brachytherapy 18:50–56

    Article  Google Scholar 

  11. Lettmaier S, Kreppner S, Lotter M et al (2011) Radiation exposure of the heart, lung and skin by radiation therapy for breast cancer: a dosimetric comparison between partial breast irradiation using multicatheter brachytherapy and whole breast teletherapy. Radiother Oncol 100:189–194

    Article  Google Scholar 

  12. Chan TY, Tan PW, Tan CW et al (2015) Assessing radiation exposure of the left anterior descending artery, heart and lung in patients with left breast cancer: a dosimetric comparison between multicatheter accelerated partial breast irradiation and whole breast external beam radiotherapy. Radiother Oncol 117:459–466

    Article  Google Scholar 

  13. Major T, Stelczer G, Pesznyák C et al (2017) Multicatheter interstitial brachytherapy versus intensity modulated external beam therapy for accelerated partial breast irradiation: a comparative treatment planning study with respect to dosimetry of organs at risk. Radiother Oncol 122:17–23

    Article  Google Scholar 

  14. Feng M, Moran JM, Koelling T et al (2011) Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int J Radiat Oncol Biol Phys 79:10–18

    Article  Google Scholar 

  15. Lee J, Hua K, Hsu S et al (2017) Development of delineation for the left anterior descending coronary artery region in left breast cancer radiotherapy: an optimized organ at risk. Radiother Oncol 122:423–430

    Article  Google Scholar 

  16. Strnad V, Hannoun-Levi J, Guinot J et al (2015) Recommendations from GEC ESTRO breast cancer working group (I): target definition and target delineation for accelerated or boost partial breast irradiation using multicatheter interstitial brachytherapy after breast conserving closed cavity surgery. Radiother Oncol 115:342–348

    Article  Google Scholar 

  17. Major T, Gutiérrez C, Guix B et al (2016) Recommendations from GEC ESTRO breast cancer working group (II): target definition and target delineation for accelerated or boost partial breast irradiation using multicatheter interstitial brachytherapy after breast conserving open cavity surgery. Radiother Oncol 118:199–204

    Article  Google Scholar 

  18. Strnad V, Major T, Polgar C et al (2018) ESTRO-ACROP guideline: interstitial multi-catheter breast brachytherapy as accelerated partial breast irradiation alone or as boost—GEC-ESTRO breast cancer working group practical recommendations. Radiother Oncol 128:411–420

    Article  Google Scholar 

  19. Strnad V, Krug D, Sedlmayer F et al (2020) DEGRO practical guideline for partial-breast irradiation. Strahlenther Onkol. https://doi.org/10.1007/s00066-020-01613-z

    Article  PubMed  PubMed Central  Google Scholar 

  20. Landberg T, Chavaudra J, Dobbs J et al (1993) Report 50. J ICRU. https://doi.org/10.1093/jicru/os26.1.Report50

    Article  Google Scholar 

  21. NN (2010) Report 83. J ICRU. https://doi.org/10.1093/jicru/10.1.Report83

    Article  Google Scholar 

  22. Gagliardi G, Constine LS, Moiseenko V et al (2010) Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys 76:S77–S85

    Article  Google Scholar 

  23. Piroth MD, Baumann R, Budach W et al (2019) Heart toxicity from breast cancer radiotherapy: current findings, assessment, and prevention. Strahlenther Onkol 195:1–12

    Article  Google Scholar 

  24. Sakka M, Kunzelmann L, Metzger M et al (2017) Cardiac dose-sparing effects of deep-inspiration breath-hold in left breast irradiation: Is IMRT more beneficial than VMAT? Strahlenther Onkol 193:800–811

    Article  Google Scholar 

  25. van Leeuwen CM, Oei AL, Crezee J et al (2018) The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol 13:96

    Article  Google Scholar 

  26. Jacobse JN, Duane FK, Boekel NB et al (2019) Radiation dose-response for risk of myocardial infarction in breast cancer survivors. Int J Radiat Oncol Biol Phys 103:595–604

    Article  Google Scholar 

  27. Henson KE, McGale P, Darby SC et al (2020) Cardiac mortality after radiotherapy, chemotherapy and endocrine therapy for breast cancer: cohort study of 2 million women from 57 cancer registries in 22 countries. Int J Cancer. https://doi.org/10.1002/ijc.32908

    Article  PubMed  PubMed Central  Google Scholar 

  28. Taylor C, McGale P, Brønnum D et al (2018) Cardiac structure injury after radiotherapy for breast cancer: cross-sectional study with individual patient data. J Clin Oncol 36:2288–2296

    Article  Google Scholar 

  29. Taylor CW, Nisbet A, McGale P et al (2009) Cardiac doses from Swedish breast cancer radiotherapy since the 1950s. Radiother Oncol 90:127–135

    Article  Google Scholar 

  30. Eldredge-Hindy H, Lockamy V, Crawford A et al (2015) Active breathing coordinator reduces radiation dose to the heart and preserves local control in patients with left breast cancer: report of a prospective trial. Pract Radiat Oncol 5:4–10

    Article  Google Scholar 

  31. Holliday EB, Kirsner SM, Thames HD et al (2017) Lower mean heart dose with deep inspiration breath hold-whole breast irradiation compared with brachytherapy-based accelerated partial breast irradiation for women with left-sided tumors. Pract Radiat Oncol 7:80–85

    Article  Google Scholar 

  32. Wennstig A, Garmo H, Isacsson U et al (2019) The relationship between radiation doses to coronary arteries and location of coronary stenosis requiring intervention in breast cancer survivors. Radiat Oncol 14(1):40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Chatzikonstantinou.

Ethics declarations

Conflict of interest

G. Chatzikonstantinou, C. Scherf, J. Köhn, H. Ackermann, U. Ramm, and N. Tselis declare that they have no competing interests.

Additional information

Data sharing

Research data are stored by the corresponding author and will be shared upon request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzikonstantinou, G., Scherf, C., Köhn, J. et al. Matched-pair dosimetric comparison of cardiac radiation exposure between deep-inspiration breath-hold whole-breast radiation therapy with Active Breathing Coordinator and interstitial multicatheter high-dose-rate brachytherapy as accelerated partial breast irradiation in adjuvant treatment of left-sided breast cancer after breast-conserving surgery. Strahlenther Onkol 197, 308–316 (2021). https://doi.org/10.1007/s00066-020-01702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-020-01702-z

Keywords

Navigation