Skip to main content

Advertisement

Log in

EPAS1 promotes peritoneal carcinomatosis of non-small-cell lung cancer by enhancing mesothelial–mesenchymal transition

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

Non-small-cell lung cancer (NSCLC) is a major cause of cancer-related death globally. Endothelial PAS domain-containing protein 1 (EPAS1) is a homolog of the hypoxia-inducible factor 1α and has been reported to confer tyrosine kinase inhibitor (TKI) resistance in NSCLC, but its role in peritoneal carcinomatosis of NSCLC is unknown.

Methods

PC14HM, a high metastatic potential subline of NSCLC cell line PC14, was derived. Stable shRNA knockdown of EPAS1 was then established in PC14HM cells and subjected to assessment regarding the effects on proliferation and viability, xenograft tumor growth, metastatic potential, mesothelial–mesenchymal transition (MMT)-related characteristics and peritoneal carcinomatosis in a mouse model.

Results

EPAS1 expression was elevated in PC14HM cells. Knockdown of EPAS1 inhibited the proliferation and viability of PC14HM cells in vitro and suppressed tumorigenesis in vivo. In addition, the metastatic features and in vitro productions of MMT-inducing factors in PC14HM cells was also associated with EPAS1. More importantly, knockdown of EPAS1 drastically suppressed peritoneal carcinomatosis of PC14HM cells in vivo.

Conclusion

EPAS1 promotes peritoneal carcinomatosis of NSCLC through enhancement of MMT and could therefore serve as a prognostic marker or a therapeutic target in treating NSCLC, particularly in patients with peritoneal carcinomatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EGFR:

Epidermal growth factor receptor

ELISA:

Enzyme-linked immunosorbent assay

EPAS1:

Endothelial PAS domain-containing protein 1

HGF:

Hepatocyte growth factor

IL:

Interleukin

MET:

Hepatocyte growth factor receptor

MMT:

Mesothelial–mesenchymal transition

NSCLC:

Non-small-cell lung cancer

PCI:

Peritoneal carcinomatosis index

PCR:

Polymerase chain reaction

SCLC:

Small-cell lung cancer

SD:

Standard deviation

TGF-β1:

Transforming growth factor-β1

TKI:

Tyrosine kinase inhibitor

TNF‑α:

Tumour necrosis factor‑α

References

  1. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594. https://doi.org/10.4065/83.5.584

    Article  PubMed  PubMed Central  Google Scholar 

  2. Duma N, Santana-Davila R, Molina JR (2019) Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc 94:1623–1640. https://doi.org/10.1016/j.mayocp.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  3. Yang P, Allen MS, Aubry MC, Wampfler JA, Marks RS, Edell ES, Thibodeau S, Adjei AA, Jett J, Deschamps C (2005) Clinical features of 5,628 primary lung cancer patients: experience at Mayo Clinic from 1997 to 2003. Chest 128:452–462. https://doi.org/10.1378/chest.128.1.452

    Article  PubMed  Google Scholar 

  4. Harjes U (2017) Non-small cell lung cancer: where there’s smoke. Nat Rev Cancer 17:634–635. https://doi.org/10.1038/nrc.2017.95

    Article  CAS  PubMed  Google Scholar 

  5. Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553:446–454. https://doi.org/10.1038/nature25183

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Chen Z (2020) Mutation detection and molecular targeted tumor therapies. STEMedicine 1:e11. https://doi.org/10.37175/stemedicine.v1i1.11

    Article  Google Scholar 

  7. Saintigny P, Burger JA (2012) Recent advances in non-small cell lung cancer biology and clinical management. Discov Med 13:287–297

    PubMed  Google Scholar 

  8. Zhen Q, Liu JF, Liu JB, Wang RF, Chu WW, Zhang YX, Tan GL, Zhao XJ, Lv BL (2015) Endothelial PAS domain-containing protein 1 confers TKI-resistance by mediating EGFR and MET pathways in non-small cell lung cancer cells. Cancer Biol Ther 16:549–557. https://doi.org/10.1080/15384047.2015.1016689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cui J, Duan B, Zhao X, Chen Y, Sun S, Deng W, Zhang Y, Du J, Chen Y, Gu L (2016) MBD3 mediates epigenetic regulation on EPAS1 promoter in cancer. Tumour Biol 37:13455–13467. https://doi.org/10.1007/s13277-016-5237-1

    Article  CAS  PubMed  Google Scholar 

  10. Pan X, Zhu Q, Sun Y, Li L, Zhu Y, Zhao Z, Zuo J, Fang W, Li K (2015) PLGA/poloxamer nanoparticles loaded with EPAS1 siRNA for the treatment of pancreatic cancer in vitro and in vivo. Int J Mol Med 35:995–1002. https://doi.org/10.3892/ijmm.2015.2096

    Article  CAS  PubMed  Google Scholar 

  11. Rawluszko-Wieczorek AA, Horbacka K, Krokowicz P, Misztal M, Jagodzinski PP (2014) Prognostic potential of DNA methylation and transcript levels of HIF1A and EPAS1 in colorectal cancer. Mol Cancer Res 12:1112–1127. https://doi.org/10.1158/1541-7786.MCR-14-0054

    Article  CAS  PubMed  Google Scholar 

  12. Patil T, Aisner DL, Noonan SA, Bunn PA, Purcell WT, Carr LL, Camidge DR, Doebele RC (2016) Malignant pleural disease is highly associated with subsequent peritoneal metastasis in patients with stage IV non-small cell lung cancer independent of oncogene status. Cancer Treat Res 96:27–32. https://doi.org/10.1016/j.lungcan.2016.03.007

    Article  Google Scholar 

  13. Doebele RC, Lu X, Sumey C, Maxson DA, Weickhardt AJ, Oton AB, Bunn PA Jr., Baron AE, Franklin WA, Aisner DL, Varella-Garcia M, Camidge DR (2012) Oncogene status predicts patterns of metastatic spread in treatment-naive nonsmall cell lung cancer. Cancer 118:4502–4511. https://doi.org/10.1002/cncr.27409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Su HT, Tsai CM, Perng RP (2008) Peritoneal carcinomatosis in lung cancer. Respirology 13:465–467. https://doi.org/10.1111/j.1440-1843.2008.01268.x

    Article  PubMed  Google Scholar 

  15. Kurishima K, Miyazaki K, Tamura T, Ohara G, Kagohashi K, Kawaguchi M, Satoh H (2013) Peritoneal and meningeal relapse from lung adenocarcinoma after a response to gefitinib: a case report. Mol Clin Oncol 1:785–787. https://doi.org/10.3892/mco.2013.122

    Article  PubMed  PubMed Central  Google Scholar 

  16. Satoh H, Kagohashi K, Kurishima K (2013) Peritoneal relapse from lung adenocarcinoma after a response to EGFR-TKI. Tuberk Toraks 61:346–347. https://doi.org/10.5578/tt.6534

    Article  PubMed  Google Scholar 

  17. Nakano T, Shimizu K, Kawashima O, Kamiyoshihara M, Kakegawa S, Sugano M, Ibe T, Nagashima T, Kaira K, Sunaga N, Ohtaki Y, Atsumi J, Takeyoshi I (2012) Establishment of a human lung cancer cell line with high metastatic potential to multiple organs: gene expression associated with metastatic potential in human lung cancer. Oncol Rep 28:1727–1735. https://doi.org/10.3892/or.2012.1972

    Article  PubMed  Google Scholar 

  18. Otto J, Jansen PL, Lucas S, Schumpelick V, Jansen M (2007) Reduction of peritoneal carcinomatosis by intraperitoneal administration of phospholipids in rats. BMC Cancer 7:104. https://doi.org/10.1186/1471-2407-7-104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA, Aguilera A, Sanchez-Tomero JA, Bajo MA, Alvarez V, Castro MA, del Peso G, Cirujeda A, Gamallo C, Sanchez-Madrid F, Lopez-Cabrera M (2003) Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 348:403–413. https://doi.org/10.1056/NEJMoa020809

    Article  PubMed  Google Scholar 

  20. Sandoval P, Jimenez-Heffernan JA, Rynne-Vidal A, Perez-Lozano ML, Gilsanz A, Ruiz-Carpio V, Reyes R, Garcia-Bordas J, Stamatakis K, Dotor J, Majano PL, Fresno M, Cabanas C, Lopez-Cabrera M (2013) Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis. J Pathol 231:517–531. https://doi.org/10.1002/path.4281

    Article  CAS  PubMed  Google Scholar 

  21. Abrams HL, Spiro R, Goldstein N (1950) Metastases in carcinoma; analysis of 1000 autopsied cases. Cancer 3:74–85

    Article  CAS  Google Scholar 

  22. Warren S, Gates O (1964) Lung cancer and metastasis. Arch Pathol 78:467–473

    CAS  PubMed  Google Scholar 

  23. McNeill PM, Wagman LD, Neifeld JP (1987) Small bowel metastases from primary carcinoma of the lung. Cancer 59:1486–1489

    Article  CAS  Google Scholar 

  24. Satoh H, Ishikawa H, Yamashita YT, Kurishima K, Ohtsuka M, Sekizawa K (2001) Peritoneal carcinomatosis in lung cancer patients. Oncol Rep 8:1305–1307. https://doi.org/10.3892/or.8.6.1305

    Article  CAS  PubMed  Google Scholar 

  25. Niu FY, Zhou Q, Yang JJ, Zhong WZ, Chen ZH, Deng W, He YY, Chen HJ, Zeng Z, Ke EE, Zhao N, Zhang N, Sun HW, Zhang QY, Xie Z, Zhang XC, Wu YL (2016) Distribution and prognosis of uncommon metastases from non-small cell lung cancer. BMC Cancer 16:149. https://doi.org/10.1186/s12885-016-2169-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nassereddine H, Sannier A, Brosseau S, Rodier JM, Khalil A, Msika S, Danel C, Couvelard A, Theou-Anton N, Cazes A (2019) Clinicopathological and molecular study of peritoneal carcinomatosis associated with non-small cell lung carcinoma. Pathol Oncol Res. https://doi.org/10.1007/s12253-019-00713-1

    Article  PubMed  Google Scholar 

  27. Putra AC, Eguchi H, Lee KL, Yamane Y, Gustine E, Isobe T, Nishiyama M, Hiyama K, Poellinger L, Tanimoto K (2015) The A allele at rs13419896 of EPAS1 is associated with enhanced expression and poor prognosis for non-small cell lung cancer. PLoS ONE 10:e134496. https://doi.org/10.1371/journal.pone.0134496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu S, Ren H, Li Y, Liang X, Ning Q, Chen X, Chen M, Hu T (2018) HOXA4-dependent transcriptional activation of AXL promotes cisplatin-resistance in lung adenocarcinoma cells. Anticancer Agents Med Chem 18:2062–2067. https://doi.org/10.2174/1871520619666181203110835

    Article  CAS  PubMed  Google Scholar 

  29. Wang Z, Wei Y, Zhang R, Su L, Gogarten SM, Liu G, Brennan P, Field JK, McKay JD, Lissowska J, Swiatkowska B, Janout V, Bolca C, Kontic M, Scelo G, Zaridze D, Laurie CC, Doheny KF, Pugh EK, Marosy BA, Hetrick KN, Xiao X, Pikielny C, Hung RJ, Amos CI, Lin X, Christiani DC (2018) Multi-omics analysis reveals a HIF network and hub gene EPAS1 associated with lung adenocarcinoma. EBioMedicine 32:93–101. https://doi.org/10.1016/j.ebiom.2018.05.024

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xu XH, Bao Y, Wang X, Yan F, Guo S, Ma Y, Xu D, Jin L, Xu J, Wang J (2018) Hypoxic-stabilized EPAS1 proteins transactivate DNMT1 and cause promoter hypermethylation and transcription inhibition of EPAS1 in non-small cell lung cancer. FASEB J. https://doi.org/10.1096/fj.201700715

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yuan S, Xiang Y, Wang G, Zhou M, Meng G, Liu Q, Hu Z, Li C, Xie W, Wu N, Wu L, Cai T, Ma X, Zhang Y, Yu Z, Bai L, Li Y (2019) Hypoxia-sensitive LINC01436 is regulated by E2F6 and acts as an oncogene by targeting miR-30a-3p in non-small cell lung cancer. Mol Oncol 13:840–856. https://doi.org/10.1002/1878-0261.12437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tan DS, Agarwal R, Kaye SB (2006) Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol 7:925–934. https://doi.org/10.1016/S1470-2045(06)70939-1

    Article  PubMed  Google Scholar 

  33. de Cuba EM, Kwakman R, van Egmond M, Bosch LJ, Bonjer HJ, Meijer GA, te Velde EA (2012) Understanding molecular mechanisms in peritoneal dissemination of colorectal cancer : future possibilities for personalised treatment by use of biomarkers. Virchows Arch 461:231–243. https://doi.org/10.1007/s00428-012-1287-y

    Article  CAS  PubMed  Google Scholar 

  34. Aroeira LS, Aguilera A, Sanchez-Tomero JA, Bajo MA, del Peso G, Jimenez-Heffernan JA, Selgas R, Lopez-Cabrera M (2007) Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 18:2004–2013. https://doi.org/10.1681/ASN.2006111292

    Article  CAS  PubMed  Google Scholar 

  35. Sandoval P, Loureiro J, Gonzalez-Mateo G, Perez-Lozano ML, Maldonado-Rodriguez A, Sanchez-Tomero JA, Mendoza L, Santamaria B, Ortiz A, Ruiz-Ortega M, Selgas R, Martin P, Sanchez-Madrid F, Aguilera A, Lopez-Cabrera M (2010) PPAR-gamma agonist rosiglitazone protects peritoneal membrane from dialysis fluid-induced damage. Lab Invest 90:1517–1532. https://doi.org/10.1038/labinvest.2010.111

    Article  CAS  PubMed  Google Scholar 

  36. Loureiro J, Aguilera A, Selgas R, Sandoval P, Albar-Vizcaino P, Perez-Lozano ML, Ruiz-Carpio V, Majano PL, Lamas S, Rodriguez-Pascual F, Borras-Cuesta F, Dotor J, Lopez-Cabrera M (2011) Blocking TGF-beta1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol 22:1682–1695. https://doi.org/10.1681/ASN.2010111197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mubarak KK, Montes-Worboys A, Regev D, Nasreen N, Mohammed KA, Faruqi I, Hensel E, Baz MA, Akindipe OA, Fernandez-Bussy S, Nathan SD, Antony VB (2012) Parenchymal trafficking of pleural mesothelial cells in idiopathic pulmonary fibrosis. Eur Respir J 39:133–140. https://doi.org/10.1183/09031936.00141010

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Wang J, Asahina K (2013) Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial-mesenchymal transition in liver injury. Proc Natl Acad Sci USA 110:2324–2329. https://doi.org/10.1073/pnas.1214136110

    Article  PubMed  Google Scholar 

  39. Perez-Lozano ML, Sandoval P, Rynne-Vidal A, Aguilera A, Jimenez-Heffernan JA, Albar-Vizcaino P, Majano PL, Sanchez-Tomero JA, Selgas R, Lopez-Cabrera M (2013) Functional relevance of the switch of VEGF receptors/co-receptors during peritoneal dialysis-induced mesothelial to mesenchymal transition. PLoS One 8:e60776. https://doi.org/10.1371/journal.pone.0060776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the Natural Science Foundation of Hebei Province (H2019106033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaxiao Zhang.

Ethics declarations

Conflict of interest

Q. Zhen, Y. Zhang, L. Gao, R. Wang, W. Chu, X. Zhao, Z. Li, H. Li, B. Zhang, B. Lv, and J. Liu declare that they have no competing interests.

Caption Electronic Supplementary Material

Figure S1. HIF1α expression is unchanged between PC14 and PC14HM cell lines.

Expression levels of (A) HIF1α mRNA and (B) protein were examined in PC14 and PC14HM cells, respectively. Values were mean ± SD from at least three biological replicates. n p> 0.05, PC14 vs PC14HM

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, Q., Zhang, Y., Gao, L. et al. EPAS1 promotes peritoneal carcinomatosis of non-small-cell lung cancer by enhancing mesothelial–mesenchymal transition. Strahlenther Onkol 197, 141–149 (2021). https://doi.org/10.1007/s00066-020-01665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-020-01665-1

Keywords

Navigation